Optical and electrical properties of hydrogenated silicon oxide thin films deposited by PECVD

Hualong Shen , Hui Wang , Hui Yan , Ming Zhang , Qingtao Pan , Haijun Jia , Yaohua Mai

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 900 -905.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 900 -905. DOI: 10.1007/s11595-014-1017-1
Advanced Materials

Optical and electrical properties of hydrogenated silicon oxide thin films deposited by PECVD

Author information +
History +
PDF

Abstract

In this work, n-type amorphous silicon oxide thin films were deposited by RF-PECVD method using a gas mixture of SiH4, CO2, H2, and PH3. The deposition rate, refractive index, band gap, crystalline volume fraction, and conductivity of the silicon oxide thin films were determined and analyzed. The film with refractive index of 1.99, band gap of 2.6eV and conductivity of 10−7 S/cm was obtained, which was suitable for the intermediate reflector layer.

Keywords

silicon oxide / intermediate layer / properties

Cite this article

Download citation ▾
Hualong Shen, Hui Wang, Hui Yan, Ming Zhang, Qingtao Pan, Haijun Jia, Yaohua Mai. Optical and electrical properties of hydrogenated silicon oxide thin films deposited by PECVD. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(5): 900-905 DOI:10.1007/s11595-014-1017-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grundler T, Lambertz A, Finger F, . N-type Hydrogenated Amorphous Silicon Oxide Containing a Microcrystalline Silicon Phase as an Intermediate Reflector in Silicon Thin Film Solar Cells[J]. Phys. Status. Solidi. C, 2010, 7(3): 1 085-1 090.

[2]

Rech B, Wagner H Potential of Amorphous Silicon for Solar Cells[J]. Appl. Phys. A, 1999, 69(1): 155-159.

[3]

Meier J, Torres P, Platz R On the Way Towards High Efficiency Thin Film Silicon Solar Cells by the “Micromorph” Concept[J]. Res. Soc. Symp. Proc., 1996, 3(1): 420-427.

[4]

Buehlmann P, Bailat J, Dominé D, . In Situ. App. Phys. Lett., 2007, 91(6): 143 505-143 510.

[5]

Bugnon G, Soderstrom T, Nicolay S, . LPCVD ZnO-Based Intermediate Reflector for Micromorph Tandem Solar Cells[J]. Sol. Energy Mater. Sol. Cells, 2011, 95(10): 2 161-2 168.

[6]

Limmanee A, Sriprapha K, Sritharathikhun J, . ZnO Interface Layer and CO2 Plasma Treatment for Improving Efficiency of Micromorph Silicon Solar Cells[J]. Sol. Energy Mater. Sol. Cells, 2011, 95(1): 146-150.

[7]

Lambertz A, Grundler T, Finger F Hydrogenated Amorphous Silicon Oxide Containing a Microcrystalline Silicon Phase and Usage as an Intermediate Reflector in Thin Film Silicon Solar Cells[J]. J. Appl. Phys., 2011, 109(3): 113 109-113 113.

[8]

Yamamoto K, Nakajima A, Yoshimi M High Efficiency Thin Film Silicon Hybrid Cell and Module With Newly Developed Innovative Interlayer[C]. Conf. Rec of IEEE 4th W. Conf. on Ph. En. Conv., 2006, 2(3): 1 489-1 496.

[9]

Das C, Lambertz A, Huepkes J, . A Constructive Combination of Antireflection and Intermediate-Reflector Layers for α-Si/mu c-Si Thin Film Solar Cells[J]. App. Phys. Lett., 2008, 92(2): 3 509-3 514.

[10]

Zhang X D, Yue Q, Zheng X X, . Plasma Deposition of N-SiOx Nanocrystalline Thin Film for Enhancing the Performance of Silicon Thin Film Solar Cells[J]. Thin Solid Films, 2011, 520(8): 684-689.

[11]

Dominé D, Buehlmann P, Bailat J, . Optical Management in High-Efficiency Thin-Film Silicon Micromorph Solar Cells with A Silicon Oxide Based Intermediate Reflector[J]. Phys. Stat. Sol., 2008, 2(3): 163-167.

[12]

Xiao L H, Astakhov O, Carius R, . Defects and Structure of μc-SiO(x): H Deposited by PECVD[J]. Phys. Status Solidi C, 2009, 7(1): 941-947.

[13]

Howling A A, Donier J L, Hollenstein C Negative-Ion Mass-Spectra and Particulate Formation in Radio-Frequency Silane Plasma Deposition Experimebts[J]. Appl. Phys. Lett., 1993, 62(4): 1 341-1 346.

[14]

Overzet L J, Beberman J H, Verdeyen J T Enhancement of the Negative-Ion Flux to Surfaces From RadioF-Requency Processing Discharges[J]. J. Appl. Phys., 1989, 66(1): 1 622-1 626.

[15]

Debajyoti D, Iftiquar S M, Barua A K Wide Optical-Gap a-SiO:H Films Prepared by Rf Glow Discharge[J]. J. Non-Cryst. Solids, 1997, 210(9): 148-153.

[16]

Sarker A, Banerjee C, Barua A K Preparation and Characterization of N-Type Microcrystalline Hydrogenated Silicon Oxide Films[J]. J. Phys., 2002, 35(3): 1 205-1 211.

[17]

Luna-Lopez A, Aceves-Mijares M, Malik O Optical and Electrical Properties of Silicon Rich Oxide Films for Optical Sensors[J]. Sens. Actuators A, 2006, 132(1): 278-283.

[18]

Funde M A, Bakr N A, Kamble K D, . Influence of Hydrogen Dilution on Structural, Electrical and Optical Properties of Hydrogenated Nanocrystalline Silicon (μc-Si: H) Thin Films Prepared by Plasma Enhanced Chemical Vapour Deposition (PE-CVD) [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(1): 1 217-1 221.

[19]

Tsai C C, Anderson B G, Thompson R, . Control of Silicon Networks Structure in Plasma Deposition[J]. J. Non-Cryst. Solids, 1989, 114(15): 151-156.

[20]

Kim K S, Park C K, Jang J Effect of H2 Dilution on The Drowth of Low-Temperature as-Deposited Poly-Si Films Using SiF4/SiH4/H2 Plasma[J]. J. Appl. Phys., 1995, 77(3): 5 115-5 119.

[21]

Milovzorov D, Inokuma T, Kurata Y, . Relationship Between Structural and Optical Properties in Polycrystalline Silicon Films Prepared at Low Temperature by Plasma-Enhanced Chemical Vapor Deposition[J]. J. Electrochem. Soc., 1998, 145(5): 3 615-3 622.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/