Cytocompatibility evaluation of grafted IKVAV PLEOF hydrogels with bone marrow mesenchymal stem cells

Binbin Li , Ping Zhang , Yixia Yin , Tong Qiu , Yuan Tao , Xinyu Wang , Shipu Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (4) : 824 -831.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (4) : 824 -831. DOI: 10.1007/s11595-014-1004-6
Biomaterials

Cytocompatibility evaluation of grafted IKVAV PLEOF hydrogels with bone marrow mesenchymal stem cells

Author information +
History +
PDF

Abstract

The novel hydrogels-grafted IKVAV poly (lactide-co-ethylene oxide-co-fumarate) (PLEOF) hydrogels (GIPHs) were developed. The rat bone marrow mesenchymal stem cells (BMMSCs) were employed, and the cell vitality and apoptosis assays were carried out to evaluate the cytocomptibility of GIPHs. Our data demonstrated that the influence of GIPHs on the proliferation of BMMSCs was in a concentration and time dependent manner. The proliferative ability of BMMSCs in GIPHs-treated group (100 μg/mL) after 72 h presented a maximum response which was 30.1% more than that of control group. The numbers of apoptotic cells in GIPHs-treated group (100 μg/mL) were just as much as that of control group after 24 h treatment. The GIPHs are able to provide an appropriate environment for BMMSCs survival and proliferation.

Keywords

proliferation / IKVAV / hydrogels / vitality / apoptosis

Cite this article

Download citation ▾
Binbin Li, Ping Zhang, Yixia Yin, Tong Qiu, Yuan Tao, Xinyu Wang, Shipu Li. Cytocompatibility evaluation of grafted IKVAV PLEOF hydrogels with bone marrow mesenchymal stem cells. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(4): 824-831 DOI:10.1007/s11595-014-1004-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shiota M, Heike T, Haruyama M, . Isolation and Characterization of Bone Marrow-derived Mesenchymal Progenitor Cells with Myogenic and Neuronal Properties[J]. Experimental Cell Research, 2007, 313(5): 1 008-1 023.

[2]

Friedenstein AJ, Gorskaja JF, Kulagina NN Fibroblast Precursors in Normal and Irradiated Mouse Hematopoietic Organs[J]. Exp. Hematol., 1976, 4(5): 267-274.

[3]

Pittenger MF, Mackay AM, Beck SC, . Multilineage Potential of Adult Human Mesenchymal Stem Cells[J]. Science, 1999, 284(5411): 143-147.

[4]

Jaiswal N, Haynesworth SE, Cpalna AI, . Osteogenie Differentiation of Purified Culture-expanded Human Mesenehymal Stem Cells in vitro[J]. J. Cell Bioehem., 1997, 64(2): 295-312.

[5]

Maniatopouls C, Sodek J, Meleher AH Bone Formation in vitro by Stromal Cells Obtained from Bone Marrow of Young Adult Rats[J]. Cell Tissue Res., 1988, 254(2): 317-300.

[6]

Johnstone B, Hering TM, Cpalan AI, . In vitro Chondrogenesis of Bone Marrow-derived Mesenchymal Progenitor Cells[J]. Exp. Cell Res., 1998, 238l: 265-272.

[7]

Giapetti G, Ambrosio L, Marletta G, . Human Bone Marrow Stromal Cells: in vitro Expansion and Differentiation for Bone Engineering[J]. Biomaterials, 2006, 27(36): 6 150-6 160.

[8]

Masoud SoleimaniSamad Nadri. A Protocol for Isolation and Culture of Mesenchymal Stem Cells from Mouse Bone Marrow[J]. Nature Protocol, 2009, 4(1): 102-106.

[9]

Osaka M, Honmou O, Murakami T, . Intravenous Administration of Mesenchymal Stem Cells Derived from Bone Marrow after Contusive Spinal Cord Injury Improves Functional Outcome[J]. Brain Res., 2010, 1343: 226-235.

[10]

Dezawa M Systematic. Neuronal and Muscle Induction Systems in Bone Marrow Stromal Cells: the Potential for Tissue Reconstruction in Neurodegenerative and Muscle Degenerative Diseases[J]. Med. Mol. Morphol., 2008, 41(4): 14-19.

[11]

Cogle CR, Yachnis AT, Laywell ED, . Bone Marrow Transdifferentiation in Brain after Transplantation: A Retrospective Study[J]. Lancet, 2004, 363(9419): 1 432-1 437.

[12]

Kwon BK, Fisher CG, Dvorak MF, . Strategies to Promote Neural Repair and Regeneration after Spinal Cord Injury[J]. Spine, 2005, 30(17S): S3-S13.

[13]

Lu P, Jones LL, Tuszynski MH, . Axon Regeneration Through Scars and into Sites of Chronic Spinal Cord Injury[J]. Exp. Neurol., 2007, 203(1): 8-21.

[14]

Stile RA, Healy KE Thermo-responsive Peptide-modified Hydrogels for Tissue Regeneration[J]. Biomacromolecules, 2001, 2(1): 185-194.

[15]

Shin H, Jo S, Mikos AG Modulation of Marrow Stromal Osteoblast Adhesion on Biomimetic Oligo (poly (ethylene glycol) fumarate) Hydrogels Modified with Arg-Gly-Asp peptides and a Poly (ethylene glycol) Spacer[J]. J. Biomed. Mater. Res., 2002, 61(2): 169-179.

[16]

Borkenhagen M, Clemence J-F, Sigrist H, . Three Dimensional Extracellular Matrix Engineering in the Nervous System[J]. J. Biomed. Mater. Res., 1999, 40(3): 392-400.

[17]

Rowley JA, Madlambayan G, Mooney DJ Alginate Hydrogels as Synthetic Extracellular Matrix Materials[J]. Biomaterials, 1999, 20(1): 45-53.

[18]

Marler JJ, Guha A, Rawley J, . Soft-tissue Augmentation with Injectable Alginate and Syngeneic Fibroblasts[J]. Plast. Reconstr. Surg., 2000, 105(6): 2 049-2 058.

[19]

Woerly S, Pinet E, de Robertis L, . Spinal Cord Repair with PHPMA Hydrogel Containing RGD Peptides[J]. Biomaterials, 2001, 22(10): 1 095-1 111.

[20]

Shin H, Jo S, Mikos AG Biomimetic Materials for Tissue Engineering[J]. Biomaterials, 2003, 24(24): 4 353-4 364.

[21]

Skubitz AP, Letourneau PC, Wayner E, . Synthetic Peptides from the Carboxy-terminal Globular Domain of the A chain of Laminin: Their Ability to Promote Cell Adhesion and Neurite Outgrowth, and Interact with Heparin and the beta I Integrin Subunit[J]. J. Cell Biol., 1991, 115(4): 1 137-1 148.

[22]

Yokoyama F, Suzuki N, Haruki M a el Cyclic Peptides from the Loop Region of the Laminin Alpha 4 Chain LG4 Module Show Enhanced Biological Activity over Linear Peptides[J]. Biochemistry, 2004, 43(42): 13 590-13 597.

[23]

Yoshida I, Tashiro K, Monji A, . Identification of a Heparin Binding Site and the Biological Activities of the Laminin alpha1 Chain Carboxy-terminal Globular Domain[J]. Cell Physiol., 1999, 179(1): 18-28.

[24]

Silva GA, Czeisler C, Niece KL, . Selective Differentiation of Neural Progenitor Cells by High-epitope Density Nanofibers[J]. Science, 2004, 303(5662): 1 352-1 355.

[25]

Zhang H, Lin CY, Hollister SJ, . The Interaction between Bone Marrow Stromal Cells and RGD-modified Three-dimensional Porous Polycaprolactone Scaffolds[J]. Biomaterials, 2009, 30(25): 4 063-4 069.

[26]

Kubinová S, Horák D The Use of Superporous Ac-CGGASIKVAVS -OH-modified PHEMA Scaffolds to Promote Cell Adhesion and the Differentiation of Human Fetal Neural Precursors[J]. Biomaterials, 2010, 31(23): 5 966-5 975.

[27]

Gutowska A, Jeong B, Jasionowski M, . Injectable Gels for Tissue Engineering[J]. Anat. Rec., 2001, 263(4): 342-349.

[28]

Gupta D, Tator CH, Shoichet MS, . Fast-gelling Injectable Blend of Hyaluronan and Methylcellulose for Intrathecal, Localized Delivery to the Injured Spinal Cord[J]. Biomaterials, 2006, 27(11): 2 370-2 379.

[29]

Jain A, Kim YT, McKeon RJ In Situ Gelling Hydrogels for Conformal Repair of Spinal Cord Defects, and Local Delivery of BDNF after Spinal Cord Injury[J]. Biomaterials, 2006, 27(3): 497-504.

[30]

Jiang Y, Jahagirdar BN, . Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow[J]. Nature, 2002, 418(6893): 41-49.

[31]

Sun S, Guo Z Isolation of Mouse Marrow Mesenchymal Progenitors by a Novel and Reliable Method[J]. Stem Cells, 2003, 21(5): 527-535.

[32]

Eslami Enjad MB, Nikmahzar A Murine Mesenchymal Stem Cells Isolated by Low Density Primary Culture System[J]. Dev. Growth Differ., 2006, 48(6): 361-370.

[33]

Becker AJ, McCulloch EA, Till JE, . Cytological Demonstration of the Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells[J]. Nature, 1963, 197(4866): 452-454.

[34]

Ulloa-Montoya F, Verfaillie CM, Hu WS, . Culture Systems for Pluripotent Stem Cells[J]. J. Biosci. Bioeng., 2005, 100(1): 12-27.

[35]

Woodbury D, Reynolds K, Black IB Adult Bone Marrow Stromal Stem Cells Express Germline, Ectodermal, Endodermal, and Mesodermal Genes Prior to Neurogenesis[J]. Neurosci. Res., 2002, 96(6): 908-917.

[36]

Hung S-C, Chen H In vitro Differentiation of Size-sieved Stem Cells into Electrically Active Neural Cells[J]. Stem Cells, 2002, 20(6): 522-529.

[37]

Sanchez J R, Ramos S, Song F, . Adult Bone Marrow Stromal Cells Differentiate into Neural Cells in vitro[J]. Exp. Neural, 2000, 164(2): 247-256.

[38]

Zhao L-R, Lin Y Human Bone Marrow Stem Cells Exhibit Neural Phenotypes and Ameliorates Neurological after Grafting into the Ischemic Brain of Rats[J]. Exp. Neural, 2002, 174(1): 11-20.

[39]

Sanchez-Ramos JR Neural Cells Derived from Adult Bone Marrow and Umbilical Cord Blood[J]. J. Neurosci. Res., 2002, 69(6): 880-893.

[40]

Coelho MJ, Fernandes MH Human Bone Cell Cultures in Biocompatibility Testing. P II:Effect of Ascorbic Acid, betaglycerophosphate and Dexamethasone on Osteoblastic Differentiation[ J]. Biomaterials, 2000, 21(11): 1 095-1 102.

[41]

Tang QQ, Jiang MS, Lane MD, . Repressive Effect of Sp1 on the C/EBP alpha Gene Promoter: Role in Adipocyte Differentiation[J]. Mol. Cell Biol., 1999, 19(7): 4 855-4 865.

[42]

Klemm DJ, Roesler WJ, Boras T, . Insulin Stimulates cAMPresponse Element Binding Protein Activity in HepG2 and 3T3-L1 Cell Lines[J]. J. Biol. Chem., 1998, 273(2): 917-923.

[43]

Friedman MS, Long MW, Hakenson KD, . Osteogenic Differentiation of Human Mesenchymal Stem Cells is Regulated by Bone Morphogenetic Protein-6[J]. Journal of Cellular Biochemistry, 2006, 98(3): 538-554.

[44]

Martin D R, Cox N R Isolation and Characterization of Multipotential Mesenchymal Stem Cells from Feline Bone Marrow[J]. Experimental Hematology, 2002, 30(8): 879-886.

[45]

Nadri S, Soleimani M, HosSeni RH, . An Efficient Method for Isolation of Murine Bone Marrow Mesenchymal Stem Cells[J]. Int. J. Dev. Biol., 2007, 51(8): 723-729.

[46]

Friedenstein AJ Precursor Cells of Mechanocyte[J]. Int. Rev. Cytol., 1976, 47: 327-359.

[47]

Perkins S, Fleischman RA Stromal Cell Progeny of Murine Bone Marrow Fibroblast Colony-forming Fibroblast Colony-forming Units are Clonal Endothelial-like Cells that Express Collagen IV and Laminin[J]. Blood, 1990, 75(3): 620-625.

[48]

Gindraux F, Selmani Z, Obert L, . Human and Rodent Bone Marrow Mesenchymal Stem Cells that Express Primitive Stem Cell Markers can be Directly Enriched by Using the CD49a Molecule[J]. Cell Tissue Res., 2007, 327(3): 471-483.

[49]

Yoshimura H, Muneta T, Nimura A, . Comparison of Rat Mesenchymal Stem Cells Derived From Bone Marrow, Synovium, Periosteum, Adipose Tissue and Muscle[J]. Cell Tissue Res., 2007, 327(3): 449-462.

[50]

Bakshi A, Fisher O, Dagci T, . Mechanically Engineered Hydrogel Scaffolds for Axonal Growth and Angiogenesis after Transplantation in Spinal Cord Injury[J]. J. Neurosurg Spinal, 2004, 1(3): 322-329.

[51]

Prang P, Müler R, Eljaouhari A, . The Promotion of Oriented Axonal Regrowth in the Injured Spinal Cord by Alginate-based Anisotropic Capillary Hydrogels[J]. Biomaterials, 2006, 27(19): 3 560-3 569.

[52]

Woerly S, Petrov P, Syková E, . Neural Tissue Formation within Porous Hydrogels Implanted in Brain and Spinal Cord Lesions: Ultrastructural, Immunohistochemical, and Diffusion Studies[J]. Tissue Eng., 1999, 5(5): 467-488.

[53]

P Řádný M, Michálek J, Lesný P, . Macroporous Hydrogels Based on 2-hydroxyethyl Methacrylate. Part 5: Hydrolytically Degradable Materials[J]. J. Mater. Sci. Mater. Med., 2006, 17(12): 1 357-1 364.

[54]

Syková E, Jendelová P, Urdzíková L, . Bone Marrow Stem Cells and Polymer Hydrogels-Two Strategies for Spinal Cord Injury Repair[J]. Cellular and Molecular Neurobiology, 2006, 26(7–8): 1 113-1 129.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/