Thermal expansion and mechanical properties of middle reinforcement content SiCp/Al composites fabricated by PM technology

Shiming Hao , Jingpei Xie , Aiqin Wang , Wenyan Wang , Jiwen Li , Haoliang Sun

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (4) : 660 -664.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (4) : 660 -664. DOI: 10.1007/s11595-014-0975-7
Advanced Materials

Thermal expansion and mechanical properties of middle reinforcement content SiCp/Al composites fabricated by PM technology

Author information +
History +
PDF

Abstract

Middle reinforcement content SiCp/Al composites (V p=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles distributed uniformly in the composites. The mean linear coefficients of thermal expansion (20–100 °C) of SiCp/Al composites ranged from 11.6×10−6 to 13.3×10−6 K−1 and decreased with an increase in volume fraction of SiC content. The experimental coefficients of thermal expansion agreed well with predicted values based on Kerner’s model. The Brinell hardness increased from 116 to 147, and the modulus increased from 99 to 112 GPa for the corresponding composites. The tensile strengths were higher than 320 MPa, but no significant increasing trend between tensile strength and SiC content was observed.

Keywords

metal-matrix composites / particle-reinforcement / coefficient of thermal expansion / mechanical properties / powder metallurgy

Cite this article

Download citation ▾
Shiming Hao, Jingpei Xie, Aiqin Wang, Wenyan Wang, Jiwen Li, Haoliang Sun. Thermal expansion and mechanical properties of middle reinforcement content SiCp/Al composites fabricated by PM technology. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(4): 660-664 DOI:10.1007/s11595-014-0975-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mohn WR, Vukobratovich D Recent Applications of Metal Matrix Composites in Precision Instruments and Optical Systems [J]. Opt. Eng., 1988, 27(2): 90-98.

[2]

O’donnell G, Looney L Production of Aluminium Matrix Composite Components Using Conventional PM Technology [J]. Mater. Sci. Eng. A., 2001, 303: 292-301.

[3]

Miracle DB Metal Matrix Composites-from Science to Technological Significance[J]. Compos. Sci. Technol., 2005, 65: 2 526-2 540.

[4]

Yan C, Lifeng W, Jianyue R Multi-functional SiC/Al Composites for Aerospace Applications[J]. Chinese J. Aeronaut., 2008, 21: 578-584.

[5]

Rawal SP Metal-matrix Composites for Space Applications[J]. JOM, 2001, 53: 14-17.

[6]

Geiger AL, Jackson M Low-expansion MMCs Boost Avionics[J]. Adv. Mater. Processes, 1989, 136(1): 23-30.

[7]

Huber T, Degischer HP, Lefranc G, . Thermal Expansion Studies on Aluminium-matrix Composites with Different Reinforcement Architecture of SiC Particles[J]. Compos. Sci. Technol., 2006, 66(13): 2 206-2 217.

[8]

Vaidya RU, Chawla KK Thermal Expansion of Metal-matrix Composites[J]. Compos. Sci. Technol., 1994, 50(1): 13-22.

[9]

Chawla N, Sidhu RS, Ganesh VV Three-dimensional Visualization and Microstructure-based Modeling of Deformation in Particle-Reinforced Composites[J]. Acta. Mater., 2006, 54(6): 1 541-1 548.

[10]

Pal R New models for effective Young’s Modulus of Particulate Composites[J]. Compos. Part B: Eng., 2005, 36: 513-523.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/