Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing

Baojia Li , Lijing Huang , Ming Zhou , Xiaomeng Fan , Ming Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (4) : 651 -655.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (4) : 651 -655. DOI: 10.1007/s11595-014-0973-9
Advanced Materials

Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing

Author information +
History +
PDF

Abstract

Gold (Au) nanoparticles were prepared on Au-film-coated K9 glass and silicon substrates by direct current (DC) magnetron sputtering and thermal annealing treatment. The effects of substrate material, annealing temperature, and time on morphologies of Au nanoparticles were investigated, and the formation mechanism of Au nanoparticles was discussed. The experimental results indicate that silicon substrate is more suitable for the formation of Au nanoparticles. On a silicon substrate, Au nanoparticles formed with good spherical shapes at temperature over 700 °C. It was also found by spectral analysis that the field enhancement factor of the island-shaped Au particles was smaller than that of the granular Au particles; the better the spherical shape as well as the smaller the size and spacing of Au particles, the higher the light absorption rate; the absorption peak had a red shift with increasing particle size and spacing.

Keywords

magnetron sputtering / annealing / Au nanoparticles / absorption spectra

Cite this article

Download citation ▾
Baojia Li, Lijing Huang, Ming Zhou, Xiaomeng Fan, Ming Ma. Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(4): 651-655 DOI:10.1007/s11595-014-0973-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Maryam M, Robert W Intercalating Gold Nano-particles as Universal Labels for DNA Detection[J]. Small, 2007, 3(9): 1 491-1 495.

[2]

Pingarrón JM, Yáñez-Sedeño P, González-Cortés A Gold Nanoparticle-Based Electrochemical Biosensors[J]. Electrochim. Acta, 2008, 53(19): 5 848-5 866.

[3]

Hu JD, Li W, Chen J, . Novel Plating Solution for Electroless Deposition of Gold Film onto Glass Surface[J]. Surf. Coat. Technol., 2008, 202(13): 2 922-2 926.

[4]

Yonezawa T, Onoue S, Kimizuka N Formation of Uniform Fluorinated Gold Nanoparticles and Their Highly Ordered Hexagonally Packed Monolayer[J]. Langmir, 2001, 17(8): 2 291-2 293.

[5]

Chen FX, Xu GQ, Hor TS A Preparation and Assembly of Colloidal Gold Nanoparticles in CTAB-stabilized Reverse Microemulsion[J]. Mater. Lett., 2003, 57(21): 3 282-3 286.

[6]

Araki H, Fukuoka A, Sakamoto Y, . Template Synthesis and Characterization of Gold Nano-wires and -particles in Mesoporous Channels of FSM-16[J]. J. Mol. Catal. A, 2003, 199(1-2): 95-102.

[7]

Porta F, Speranza G, Krpetić, . Gold Nanoparticles Capped by Peptides[J]. Mater. Sci. Eng. B, 2007, 140(3): 187-194.

[8]

Zhang R, Hummelgård M, Olin H Simple and Efficient Gold Nanoparticles Deposition on Carbon Nanotubes with Controllable Particle Sizes[J]. Mater. Sci. Eng. B, 2009, 158(1–3): 48-52.

[9]

Hamada Y, Nishi M, Shimotsuma Y, . Sol-Gel Synthesis of Aunanoparticle Dispersed Bicontinuous Macroporous Siloxane Gel[J]. IOP Conf. Series: Mater. Sci. Eng., 2011, 18(2A): 032002~1-4.

[10]

Misrar TK, Chen TS, Liu CY Phase Transfer of Gold Nanoparticles from Aqueous to Organic Solution Containing Resorcinarene[J]. J. Colloid Interface Sci., 2006, 297(2): 584-588.

[11]

Zhao SY, Kang YS Phase Transfer of Au Nanoparticles Using one Chemical Inducer: DDAB[J]. J. Nanopart. Res., 2011, 13(6): 2 399-2 406.

[12]

Van der Zande BMI, Bohmer MR, Fokkink LGJ, . Aqueous Gold Sols of Rod-shaped Particles[J]. J. Phys. Chem. B, 1997, 101(6): 852-854.

[13]

Dolati A, Imanieh I, Salehi F, . The Effect of Cysteine on Electrodeposition of Gold Nanoparticle[J]. Mater. Sci. Eng. B, 2011, 176(16): 1 307-1 312.

[14]

Mandal M, Ghosh SK, Kundu S, . UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles[J]. Langmuir, 2002, 18(21): 7 792-7 797.

[15]

Mandal S, Selvakannan PR, Pasricha R, . Keggin Ions as UV-Switchable Reducing Agents in the Synthesis of Au Core-Ag Shell Nanoparticles[J]. J. Am. Chem. Soc., 2003, 125(28): 8 440-8 441.

[16]

Ayati A, Ahmadpour A, Bamoharram FF, . Optimization of the Experimental Conditions in Synthesis of Au NPs Using Preyssler Heteropolyacid Based on the Taguchi Robust Design[J]. Nano, 2012, 7(1): 1250002-1-10.

[17]

Sato S, Mori K, Ariyada O, . Synthesis of Nanoparticles of Noble Metals by Microwave-Induced Plasma in Liquid[J]. Surf. Coat. Technol., 2011, 206(5): 955-958.

[18]

Tu WX, Liu HF Rapid Synthesis of Nanoscale Colloidal Metal Clusters by Microwave Irradiation[J]. J. Mater. Chem., 2000, 10(9): 2 207-2 211.

[19]

Pietrzak Jeszka JK Gold Nanoparticles Grown on Multiwall Carbon Nanotubes[J]. Mater. Sci.-Poland, 2009, 27(3): 693-698.

[20]

Ko SH, Choi Y, Hwang DJ, . Nanosecond Laser Ablation of Gold Nanoparticle Films[J]. Appl. Phys. Lett., 2006, 89(14): 141126~1-3.

[21]

Wender H, Andreazza ML, Correia RR, . Synthesis of Gold Nanoparticles by Laser Ablation of an Au Foil Inside and Outside Ionic Liquids[J]. Nanoscale, 2011, 3(3): 1 240-1 245.

[22]

Lee KC, Lin SJ, Lin CH, . Size Effect of Ag Nanoparticles on Surface Plasmon Resonance[J]. Surf. Coat. Technol., 2008, 202(22-23): 5 339-5 342.

[23]

Halperin WP Quantum Size Effects in Metal Particles[J]. Rev. of Modern Phys., 1986, 58(3): 533-606.

[24]

Link S, El-Sayed MA Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles[J]. J. Phys. Chem. B, 1999, 103(21): 4 212-4 217.

[25]

Ebbesen TW, Lezec HJ, Ghaemil HF, . Extraordinary Optical Transmission Through Sub-wavelength Hole Arrays[J]. Nature, 1998, 39(21): 677-669.

[26]

Wokaun A, Bergman JG, Heritage JP, . Surface Second-Harmonic Generation from Metal Island Films and Microlithographic Structures[J]. Phys. Rev. B, 1981, 24(2): 849-856.

[27]

Sun Y, Xia Y Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science, 2002, 298(5601): 2 176-2 179.

[28]

Sepúlveda B, Angelomé PC, Lechuga LM, . LSPR-Based Nanobiosensors[J]. Nano Today, 2009, 4(3): 244-251.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/