Immobilization of RGD peptide onto the surface of apatite-wollastonite ceramic for enhanced osteoblast adhesion and bone regeneration

Xiang Zhang , Jianwen Gu , Yue Zhang , Yanfei Tan , Jiabei Zhou , Dali Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 626 -634.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 626 -634. DOI: 10.1007/s11595-014-0969-5
Article

Immobilization of RGD peptide onto the surface of apatite-wollastonite ceramic for enhanced osteoblast adhesion and bone regeneration

Author information +
History +
PDF

Abstract

The arginine-glycine-aspartic (RGD) acid peptide was grafted to the surface of apatite-wollastonite (AW) ceramic in an effort to improve its cell adhesion, proliferation and osteoinduction. RGD peptide was covalently immobilized onto the surface of AW ceramic via the synthetic cross linker AAPTS-E and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The modified surfaces were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The chemical analysis indicated that RGD peptide had been immobilized onto the AW surface successfully. The growth of osteoblast-like cells (MG63) showed that modifying the AW surface with RGD peptide enhanced the cell adhesion and proliferation. And the histological evaluation of RGD-AW showed that the bone regeneration and remodeling process were significantly enhanced compared to the original AW ceramics after 2, 4 and 8 weeks implantation in rabbit’s femoral condyles.

Keywords

apatite-wollastonite ceramic / surface modification / RGD peptide / osteoinduction / bone regeneration

Cite this article

Download citation ▾
Xiang Zhang, Jianwen Gu, Yue Zhang, Yanfei Tan, Jiabei Zhou, Dali Zhou. Immobilization of RGD peptide onto the surface of apatite-wollastonite ceramic for enhanced osteoblast adhesion and bone regeneration. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(3): 626-634 DOI:10.1007/s11595-014-0969-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu C, Chang J, Wang J, . Preparation and Characteristics of a Calcium Magnesium Silicate (Bredigite) Bioactive Ceramic[J]. Biomaterials, 2005, 26(16): 2 925-2 931.

[2]

Zhai W, Lu H, Chen L, . Silicate Bioceramics Induce Angiogenesis During Bone Regeneration[J]. Acta Biomaterialia, 2012, 8(1): 341-349.

[3]

Hing K A, Revell P A, Smith N, . Effect of Silicon Level on Rate, Quality and Progression of Bone Healing within Silicate-substituted Porous Hydroxyapatite Scaffolds[J]. Biomaterials, 2006, 27(29): 5 014-5 026.

[4]

Chen Q Z, Thouas G A Fabrication and Characterization of Sol-gel Derived 45S5 Bioglass®-ceramic Scaffolds[J]. Acta Biomaterialia, 2011, 7(10): 3 616-3 626.

[5]

Goel A, Rajagopal R R, Ferreira J M Influence of Strontium on Structure, Sintering and Biodegradation Behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 Glasses[J]. Acta Biomaterialia, 2011, 7(11): 4 071-4 080.

[6]

Meyers S R, Grinstaff M W Biocompatible and Bioactive Surface Modifications for Prolonged in vivo Efficacy[J]. Chemical Reviews, 2012, 112(3): 1 615-1 632.

[7]

Yan S G, Zhang J, Tu Q S, . Enhanced Osseointegration of Titanium Implant through the Local Delivery of Transcription Factor SATB2[J]. Biomaterials, 2011, 32(33): 8 676-8 683.

[8]

Liang G, Yang Y, Oh S, . Ectopic Osteoinduction and Early Degradation of Recombinant Human Bone Morphogenetic Protein-2-loaded Porous Beta-tricalcium Phosphate in Mice[J]. Biomaterials, 2005, 26(20): 4 265-4 271.

[9]

Kaito T, Myoui A, Takaoka K, . Potentiation of the Activity of Bone Morphogenetic Protein-2 in Bone Regeneration by a PLA-PEG/hydroxyapatite Composite[J]. Biomaterials, 2005, 26(1): 73-79.

[10]

Lutolf M P, Hubbell J A Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering[J]. Nature Biotechnology, 2005, 23(1): 47-55.

[11]

Marelli B, Ghezzi C E, Mohn D, . Accelerated Mineralization of Dense Collagen-nano Bioactive Glass Hybrid Gels Increases Scaffold Stiffness and Regulates Osteoblastic Function[J]. Biomaterials, 2011, 32(34): 8 915-8 926.

[12]

Cao X, Yu W Q, Qiu J, . RGD Peptide Immobilized on TiO2 Nanotubes for Increased Bone Marrow Stromal Cells Adhesion and Osteogenic Gene Expression[J]. Journal of Materials Science: Materials in Medicine, 2012, 23(2): 527-536.

[13]

Ceylan H, Tekinay A B, Guler M O Selective Adhesion and Growth of Vascular Endothelial Cells on Bioactive Peptide Nanofiber Functionalized Stainless Steel Surface[J]. Biomaterials, 2011, 32(34): 8 797-8 805.

[14]

Moore N M, Lin N J, Gallant N D, . Synergistic Enhancement of Human Bone Marrow Stromal Cell Proliferation and Osteogenic Differentiation on BMP-2-derived and RGD Peptide Concentration Gradients[J]. Acta Biomaterialia, 2011, 7(5): 2 091-2 100.

[15]

Nuttelman C R, Mortisen D J, Henry S M, . Attachment of Fibronectin to Poly(vinyl alcohol) Hydrogels Promotes N1H3T3 Cell Adhesion, Proliferation, and Migration[J]. Journal of Biomedical Materials Research, 2001, 57(2): 217-223.

[16]

Park J W, Kurashima K, Tustusmi Y, . Bone Healing of Commercial Oral Implants with RGD Immobilization through Electrodeposited Poly(ethylene glycol) in Rabbit Cancellous Bone[J]. Acta Biomaterialia, 2011, 7(8): 3 222-3 229.

[17]

Zorn G, Gotman I, Gutmanas E Y, . Surface Modification of Ti45Nb Alloy by Immobilization of RGD Peptide via Self Assembled Monolayer[J]. Journal of Materials Science: Materials in Medicine, 2007, 18(7): 1 309-1 315.

[18]

Wang V, Misra G, Amsden B Immobilization of a Bone and Cartilage Stimulating Peptide to a Synthetic Bone Graft[J]. Journal of Materials Science: Materials in Medicine, 2008, 19(5): 2 145-2 155.

[19]

Huang J, Gräter S V, Corbellini F, . Impact of Order and Disorder in RGD Nanopatterns on Cell Adhesion[J]. Nano Letters, 2009, 9(3): 1 111-1 116.

[20]

Acharya B, Chun S Y, Kim S Y, . Surface Immobilization of MEPE Peptide onto HA/β-TCP Ceramic Particles Enhances Bone Regeneration and Remodeling[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2012, 100(3): 841-849.

[21]

Wang X, Li X, Ito A, . Synthesis and Characterization of Hierarchically Macroporous and Mesoporous CaO-MO-SiO2-P2O5 (M=Mg, Zn, Sr) Bioactive Glass Scaffolds[J]. Acta Biomaterialia, 2011, 7(10): 3 638-3 44.

[22]

Li X, Wang X, He D Synthesis and Characterization of Mesoporous CaO-MO-SiO2-P2O5 (M = Mg, Zn, Cu) Bioactive Glasses/Composites[J]. Journal of Materials Chemistry, 2008, 18(34): 4 103-4 109.

[23]

Zhao S, Li Y, Li D Synthesis of CaO-SiO2-P2O5 Mesoporous Bioactive Glasses with High P2O5 Content by Evaporation Induced Self Assembly Process[J]. Journal of Materials Science: Materials in Medicine, 2011, 22(2): 201-208.

[24]

Yu J, Yang J, Li H, . Study on Particle-stabilized Si3N4 Ceramic Foams[J]. Materials Letters, 2011, 65(12): 1 801-1 804.

[25]

Tamai N, Myoui A, Tomita T, . Novel Hydroxyapatite Ceramics with an Interconnective Porous Structure Exhibit Superior Osteoconduction in vivo[J]. Journal of Biomedical Materials Research, 2002, 59(1): 110-117.

[26]

Hing K A, Wilson L F, Buckland T Comparative Performance of Three Ceramic Bone Graft Substitutes[J]. The Spine Journal, 2007, 7(4): 475-490.

[27]

Hing K A, Annaz B, Saeed S, . Microporosity Enhances Bioactivity of Synthetic Bone Graft Substitutes[J]. Journal of Materials Science: Materials in Medicine, 2005, 16(5): 467-475.

[28]

Xiao B, Wan Y, Zhao M, . Preparation and Characterization of Antimicrobial Chitosan-N-arginine with Different Degrees of Substitution[J]. Carbohydrate Polymers, 2011, 83(1): 144-150.

[29]

Li Z, Ramay H R, Hauch K D, . Chitosan-alginate Hybrid Scaffolds for Bone Tissue Engineering[J]. Biomaterials, 2005, 26(18): 3 919-3 928.

[30]

Yang C, Cheng K, Weng W, . Immobilization of RGD Peptide on HA Coating through a Chemical Bonding Approach[J]. Journal of Materials Science: Materials in Medicine, 2009, 20(11): 2 349-2 352.

[31]

Seo H S, Ko Y M, Shim J W, . Characterization of Bioactive RGD Peptide Immobilized onto Poly(acrylic acid) Thin Films by Plasma Polymerization[J]. Applied Surface Science, 2010, 257(2): 596-602.

[32]

Lopez L C, Gristina R, Ceccone G, . Immobilization of RGD Peptides on Stable Plasma-deposited Acrylic Acid Coatings for Biomedical Devices[J]. Surface and Coatings Technology, 2005, 200(1): 1 000-1 004.

[33]

De Bartolo L, Morelli S, Lopez L C, . Biotransformation and Liver-specific Functions of Human Hepatocytes in Culture on RGDimmobilized Plasma-processed Membranes[J]. Biomaterials, 2005, 26(21): 4 432-4 441.

[34]

Kang Y, Kim S, Bishop J, . The Osteogenic Differentiation of Human Bone Marrow MSCs on HUVEC-derived ECM and β-TCP Scaffold[J]. Biomaterials, 2012, 33(29): 6 998-7 007.

[35]

Porté-Durrieu M, Labrugere C, Villars F, . Development of RGD Peptides Grafted onto Silica Surfaces: XPS Characterization and Human Endothelial Cell Interactions[J]. Journal of Biomedical Materials Research, 1999, 46(3): 368-375.

[36]

Ghanaati S, Barbeck M, Detsch R, . The Chemical Composition of Synthetic Bone Substitutes Influences Tissue Reactions in vivo: Histological and Histomorphometrical Analysis of the Cellular Inflammatory Response to Hydroxyapatite, Beta-tricalcium Phosphate and Biphasic Calcium Phosphate Ceramics[J]. Biomedical Materials, 2012, 7(1): 015 005

[37]

Zhang H, Ye XJ, Li J S Preparation and Biocompatibility Evaluation of Apatite/wollastonite-derived Porous Bioactive Glass Ceramic Scaffolds[J]. Biomedical Materials, 2009, 4(4): 045 007

[38]

Ruoslahti E RGD and Other Recognition Sequences for Integrins[J]. Annual Review of Cell and Developmental Biology, 1996, 12(1): 697-715.

[39]

Sprowson A P, McCaskie A W, Birch M A ASARM-truncated MEPE and AC-100 Enhance Osteogenesis by Promoting Osteoprogenitor Adhesion[J]. Journal of Orthopaedic Research, 2008, 26(9): 1 256-1 262.

[40]

Griss P, Silber R, Merkle B, . Biomechanically Induced Tissue Reactions after Al2O3-ceramic Hip Joint Replacement, Experimental and Early Clinical Results[J]. Journal of Biomedical Materials Research, 1976, 10(4): 519-528.

[41]

Wang N, Butler J P, Ingber D E, . Mechanotransduction across the Cell Surface and through the Cytoskeleton[J]. Science, 1993, 260(21): 1 124-1 127.

[42]

Secchi A G, Grigoriou V, Shapiro I M, . RGDS Peptides Immobilized on Titanium Alloy Stimulate Bone Cell Attachment, Differentiation and Confer Resistance to Apoptosis[J]. Journal of Biomedical Materials Research Part A, 2007, 83(3): 577-584.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/