RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration

Xiaoqing Fang , Tong Qiu , Lijuan Xie , Yixia Yin , Binbin Li , Qiongjiao Yan , Honglian Dai , Xinyu Wang , Shipu Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 620 -625.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 620 -625. DOI: 10.1007/s11595-014-0968-6
Article

RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration

Author information +
History +
PDF

Abstract

Schwann cells play a key role in peripheral nerve growth and regeneration. The aim of this study was to evaluate the effects of RGD peptides on Schwann cell behavior, and to identify the effects of the modified PDLLA films with RGD in vivo. The results revealed that RGD coating with the concentration of 100–500 ug/mL promoted the cell proliferation and boosted the cell migration. Molecularly, RGD coating also enhanced the expression of the proliferation related genes (c-fos and c-jun) and the cell behavior related genes (actin, tublin, tau and MAP1) at first stages of the seeding, which is similar to the effects from laminin coating. In vivo, RGD addition improved the recovery efficiency of the transected nerve in regard of the more survived Schwann cells in vivo and the formation of more mature myelin sheath. Taken together, RGD peptides are good candidates to enhance the biocompatibility of the biomaterials and facilitate the peripheral nerve regeneration by prompting responses in Schwann cells.

Keywords

RGD / Schwann cells / cell behavior / PDLLA-PRGD conduit / sciatic nerve regeneration

Cite this article

Download citation ▾
Xiaoqing Fang, Tong Qiu, Lijuan Xie, Yixia Yin, Binbin Li, Qiongjiao Yan, Honglian Dai, Xinyu Wang, Shipu Li. RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(3): 620-625 DOI:10.1007/s11595-014-0968-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Epple M, Festk R J M Orperchemie Und Chirurgie [J]. Nachr. Chem. Tech. Lab., 1999, 47: 1 405-1 410.

[2]

Rasmussen J R, Stedronsky E R, Whitesides G M Introduction, Modification, and Characterization of Functional Groups on the Surface of Low-density Polyethylene Film [J]. J. Am. Chem. Soc., 1977, 99: 4 736-4 745.

[3]

Lee J H, Jung J W, Kang I K, . Cell Behaviour on Polymer Surfaces with Different Functional Groups [J]. Biomaterials, 1994, 15: 705-711.

[4]

Brandley B K, Schnaar R L Covalent Attachment of an ARG-GLY-ASP Sequence Peptide to Derivatizable Polyacrylamide Surfaces: Support of Fibroblast Adhesion and Long-term Growth [J]. Anal. Biochem., 1998, 172: 270-278.

[5]

Lin H B, Zhao Z C, Garcia-Echeverria C, . Synthesis of a Novel Polyurethane Copolymer Containing Covalently AttachedRGD Peptide [J]. J Biomater. Sci., 1991, 3: 217-227.

[6]

Falb R D, Grode G A Covalent Bonding of Proteins to Solid Surfaces [J]. Fed. Proc., 1971, 30: 1 688-1 691.

[7]

Kobayashi K, Sumitomo H Oligosaccharide-carrying Styrenetype Macromers. Polymerization Andspecific Interactions between the Polymers and Liver Cells [J]. J. Macromol. Sci. Chem., 1988, 25: 655-667.

[8]

Weigel P H, Schnaar R L, Kuhlenschmidt M S, . Adhesion of Hepatocytes to Immobilized Sugars: A Threshold Phenomenon [J]. J. Biol. Chem., 1979, 354: 10 830-10 838.

[9]

Ruoslahti E, Pierschbacher M D New Perspectives in Cell Adhesion: RGD and Integrins [J]. Science, 1987, 238: 491-497.

[10]

Albelda S M, Buck C A Integrins and Other Cell Adhesion Molecules [J]. FASEB. J., 1990, 4: 2 868-2 880.

[11]

Travis J Biotech Gets a Grip on Cell Adhesion [J]. Science, 1993, 260: 906-908.

[12]

Kammerer P W, Heller M, Brieger J, . Immobilisation of Linear and Cyclic RGD-peptides on Titanium Surfaces and Their Impact on Endothelial Cell Adhesion and Proliferation [J]. Eur. Cells. Mater., 2011, 21: 364-372.

[13]

Shu X Z, Ghosh K, Liu Y, . Attachment and Spreading of Fibroblasts on an RGD Peptide-modified Injectable Hyaluronan Hydrogel [J]. J. Biomed. Mater. Res. A, 2004, 68: 365-375.

[14]

Li B, Chen J X, Wang J H C RGD Peptide-conjugated poly (dimethylsiloxane) Promotes Adhesion, Proliferation, and Collagen Secretion of Human Fibroblasts [J]. J. Biomed. Mater. Res. A, 2006, 79: 989-998.

[15]

Hersel U, Dahmen C, Kessler H RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond [J]. Biomaterials, 2003, 24: 4 385-4 415.

[16]

Davis D H, Giannoulis C S, Johnsonb R W, . Immobilization of RGD to Silicon Surfaces for Enhanced Cell Adhesion and Proliferation[J]. Biomaterials, 2002, 23: 4 019-4 027.

[17]

Kafi M A, El-Said W A, Kim T H, . Cell Adhesion, Spreading, and Proliferation on Surface Functionalized with RGD Nanopillar Arrays [J]. Biomaterials, 2012, 33: 731-739.

[18]

Puleo D A, Bizios R RGDS Tetrapeptide Binds to Osteoblasts and Inhibits Fibronectin-mediated Adhesion [J]. Bone, 1991, 12: 271-276.

[19]

Rezania A, Thomas C H, Branger A B, . The Detachment Strength and Morphology of Bone Cells Contacting Materials Modified with a Peptide Sequence Found within Bone Sialoprotein [J]. J. Biomed. Mater. Res., 1997, 37: 9-19.

[20]

Massia S, Hubbell J Covalent Surface Immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing Peptides to Obtain Well-defined Cell-adhesive Substrates [J]. Anal. Biochem., 1990, 187: 292-301.

[21]

Qiongjiao Y, Yixia Y, Binbin L Use New PLGL-RGD-NGF Nerve Conduits for Promoting Peripheral Nerve Regeneration [J]. Biomedical Engineering Online, 2012, 11: 36-40.

[22]

Wohlrab S, Müller S, Schmidt A, . Cell Adhesion and Proliferation on RGD-modified Recombinant Spider Silk Proteins [J]. Biomaterials, 2012, 33: 6 650-6 659.

[23]

Wacker B K, Alford S K, Scott E A, . Endothelial Cell Migration on RGD-peptide-containing PEG Hydrogels in the Presence of Sphingosine 1-Phosphate [J]. Biophysical J., 2008, 94: 273-285.

[24]

Zayzafoon M, Stell C, Irwin R, . Extracellular Glucose Influences Osteoblast Differentiation and c-jun Expression [J]. J. Cell Bioche., 2000, 79: 301-310.

[25]

Li H H, He B, Peng H, . Effects of Pyrroloquinoline Quinone on Proliferation and Expression of c-fos, c-jun, CREB and PCNA in Cultured Schwann Cells [J]. Zhonghua Zheng Xing Wai Ke Za Zhi, 2011, 27: 298-303.

[26]

Peris L, Thery M, Faure J, . Tubulin Tyrosination is a Major Factor Affecting the Recruitment of CAP-Gly Proteins at Microtubule Plus Ends[J]. J. Cell Biol., 2006, 174: 839-849.

[27]

Ramey V H, Wang H W, Nakajima Y, . The Dam1 Ring Binds to the E-hook of Tubulin and Diffuses Along the Microtubule[J]. Mol. Biol. Cell, 2011, 22: 457-466.

[28]

Trinczek B, Ebneth A, Mandelkow E M, . Tau Regulates the Attachment/Detachment but not the Speed of Motors in Microtubule-Dependent Transport of Single Vesicles and Organelles [J]. J. Cell. Sci., 1999, 112: 2 355-2 367.

[29]

Fuhrmann-Stroissnigg H, Noiges R, Descovich L, . The Light Chains of Microtubule-associated Proteins MAP1A and MAP1B Interact with α1-syntrophin in the Central and Peripheral Nervous System [J]. PLos One, 2012, 7: 49 722-49 727.

[30]

Liu W Q, Martinez J A, Durand J, . RGD-mediated Adhesive Interactions are Important for Peripheral Axon Outgrowth in Vivo [J]. Neurobiol. Dis., 2009, 34: 11-22.

[31]

Afshari F T, Kwok J C, White L Schwann Cell Migration Is Integrin-Dependent and Inhibited by Astrocyte-produced Aggrecan [J]. Glia, 2010, 58: 857-869.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/