The evolution of hardness homogeneity in commercially pure Ti processed by ECAP

Xiaoyan Liu , Xicheng Zhao , Xirong Yang , Jiangping Jia , Boli Qi

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 578 -584.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 578 -584. DOI: 10.1007/s11595-014-0960-1
Article

The evolution of hardness homogeneity in commercially pure Ti processed by ECAP

Author information +
History +
PDF

Abstract

The evolution of hardness homogeneity in commercially pure titanium processed by equal channel angular pressing (ECAP) for up to 4 passes following route C at room temperature using a die of 90°C was investigated by recording the microhardness on the cross-sectional and longitudinal planes of each billet. The results show that the hardness increases significantly after the first pass although there is a region of lower hardness on the cross-section running in a band near the bottom surface of the billet, and then increases by very small amounts in subsequent passes. With increasing numbers of passes, the lower hardness region near the bottom surface disappears and the microhardness values are distributed homogeneously throughout the cross-sectional and longitudinal planes after 4 passes of ECAP. The microhardness values in the central regions of the billet are slightly lower than those of the top and bottom surfaces. The results show that good homogeneity may be achieved throughout the billets after 4 passes of ECAP following route C.

Keywords

commercially pure titanium / equal channel angular pressing / hardness / homogeneity

Cite this article

Download citation ▾
Xiaoyan Liu, Xicheng Zhao, Xirong Yang, Jiangping Jia, Boli Qi. The evolution of hardness homogeneity in commercially pure Ti processed by ECAP. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(3): 578-584 DOI:10.1007/s11595-014-0960-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Das M, Das G, Ghosh M, . Microstructures and Mechanical Properties of HPT Processed 6063 Al Alloy[J]. Mater. Sci. Eng., 2012, A558: 525-532.

[2]

Chen Y J, Chai Y C, Roven H J, . Microstructure and Mechanical Properties of Al-xMg Alloys Processed by Room Temperature ECAP [J]. Mater. Sci. Eng., 2012, A545: 139-147.

[3]

Eizadjou M, Manesh H D, Janghorban K Microstructure and Mechanical Properties of Ultra-fine Grains (UFGs) Aluminum Strips Produced by ARB Process[J]. J. Alloy. Compd., 2009, 474(1–2): 406-415.

[4]

Chen Y J, Li Y J, Walmsley J C, . Quantitative Analysis of Grain Refinement in Titanium during Equal Channel Angular Pressing [J]. Scripta Mater., 2011, 64(9): 904-907.

[5]

Zhilyaev A P, Langdon T G Using High-pressure Torsion for Metal Processing: Fundamentals and Applications [J]. Prog. Mater. Sci., 2008, 53(6): 893-979.

[6]

Horita Z, Fujinami T, Langdon T G The Potential for Scaling ECAP: Effect of Sample Size on Grain Refinement and Mechanical Properties [J]. Mater. Sci. Eng., 2001, A318(1–2): 34-41.

[7]

Chaudhury P K, Cherukuri B, Srinivasan R Scaling Up of Equalchannel Angular Pressing and Its Effect on Mechanical Properties, Microstructure, and Hot Workability of AA 6061 [J]. Mater. Sci. Eng., 2005, A410–411: 316-318.

[8]

Munoz M A, Morris D G Severe Plastic Deformation Processing of Al-Cu-Li Alloy for Enhancing Strength While Maintaining Ductility [J]. Scripta Mater., 2010, 63(3): 304-307.

[9]

Kim W J, Chung C S, Ma D S, . Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging [J]. Scripta Mater., 2003, 49(4): 333-338.

[10]

Zheng L J, Li H X, Hashmi M F, . Evolution of Microstructure and Strengthening of 7050 Al Alloy by ECAP Combined with Heattreatment [J]. J. Mater. Process. Tech., 2006, 171(1): 100-107.

[11]

Semiatin S L, Segal V M, Goforth R E, . Workability of Commercial-purity Titanium and 4340 Steel during Equal Channel Angular Extrusion at Cold-working Temperatures [J]. Metall. Mater. Trans., 1999, A30(5): 1 425-1 435.

[12]

Figueiredo R B, Cetlin P R, Langdon T G The Processing of Difficultto-work Alloys by ECAP with an Emphasis on Magnesium Alloys [J]. Acta Mater., 2007, 55(14): 4 769-4 779.

[13]

Zhao X C, Fu W J, Yang X R, . Microstructure and Properties of Pure Titanium Processed by Equal-channel Angular Pressing at Room Temperature [J]. Scripta Mater., 2008, 59(5): 542-545.

[14]

Zhao X C, Yang X R, Liu X Y, . The Processing of Pure Titanium through Multiple Passes of ECAP at Room Temperature [J]. Mater. Sci. Eng., 2010, A527(23): 6 335-6 339.

[15]

Zhang Y, Figueiredo R B, Alhajeri S N, . Structure and Mechanical Properties of Commercial Purity Titanium Processed by ECAP at Room Temperature[J]. Mater. Sci. Eng., 2011, A528(25–26): 7 708-7 714.

[16]

Dheda S S, Mohamed F A Effect of Initial Microstructure on the Processing of Titanium Using Equal Channel Angular Pressing [J]. Mater. Sci. Eng., 2011, A528(28): 8 179-8 186.

[17]

Liu X Y, Zhao X C, Yang X R, . Compression Deformation Behaviours of Ultrafine and Coarse Grained Commercially Pure Titanium [J]. Mater. Sci. Tech-Lond., 2013, 29(4): 474-479.

[18]

Segal V M Materials Processing by Simple Shear [J]. Mater. Sci. Eng., 1995, A197(2): 157-164.

[19]

Wu Y, Baker I An Experiment Study of Equal Channel Angular Extrusion [J]. Scripta Mater., 1997, 37(4): 437-442.

[20]

Xu C, Langdon T G The Development of Hardness Homogeneity in Aluminum and an Aluminum Alloy Processed by ECAP [J]. J. Mater. Sci., 2007, 42(5): 1 542-1 550.

[21]

Xu C, Furukawa M, Horita Z, . The Evolution of Homogeneity and Grain Refinement during Equal-channel Angular Pressing: A Model for Grain Refinement in ECAP [J]. Mater. Sci. Eng., 2005, A398(1–2): 66-76.

[22]

Prell M, Xu C, Langdon T G The Evolution of Homogeneity on Longitudinal Sections during Processing by ECAP [J]. Mater. Sci. Eng., 2008, A480(1–2): 449-455.

[23]

Alhajeri S N, Gao N, Langdon T G Hardness Homogeneity on Longitudinal and Transverse Sections of an Aluminum Alloy Processed by ECAP [J]. Mater. Sci. Eng., 2011, A528(10–11): 3 833-3 840.

[24]

Iwahashi Y, Wang J T, Horita Z, . Principle of Equal-channel Angular Pressing for the Processing of Ultra-fine Grained Materials [J]. Scripta Mater., 1996, 35(2): 143-146.

[25]

Furukawa M, Iwahashi Y, Horita Z, . The Shearing Characteristics Associated with Equal-channel Angular Pressing [J]. Mater. Sci. Eng., 1998, A257(2): 328-332.

[26]

Valiev R Z, Langdon T G Principles of Equal-channel Angular Pressing as a Processing Tool for Grain Refinement [J]. Prog. Mater. Sci., 2006, 51(7): 881-981.

[27]

Delo D P, Semiatin S L Finite-element Modeling of Nonisothermal Equal-Channel Angular Extrusion[J]. Metall. Mater. Trans., 1999, A30(5): 1 391-1 402.

[28]

Chung S W, Somekawa H, Kinoshita T, . The Non-uniform Behavior during ECAE Process by 3-D FVM Simulation [J]. Scripta Mater., 2004, 50(7): 1 079-1 083.

[29]

Wei W, Nagasekhar A V, Chen G, . Origin of Inhomogeneous Behavior during Equal Channel Angular Pressing [J]. Scripta Mater., 2006, 54(11): 1 865-1 869.

[30]

Semiatin S L, Delo D P, Shell E B The Effect of Material Properties and Tooling Design on Deformation and Fracture during Equal Channel Angular Extrusion [J]. Acta Mater., 2000, 48(8): 1 841-1 851.

[31]

Prangnell P B, Harris C, Roberts S M Finite Element Modeling of Equal Channel Angular Extrusion[J]. Scripta Mater., 1997, 37(7): 983-989.

[32]

Shan A, Moon I G, Ko H S, . Direct Observation of Shear Deformation during Equal Channel Angular Pressing of Pure Aluminum [J]. Scripta Mater., 1999, 41(4): 353-357.

[33]

Zhao X C, Xie C, Wang G J, . Texture Evolution in Commercially Pure Titanium after ECAP Using a 90°C Die at Room Temperature [J]. Rare Metal Mater. Eng., 2013, 42(6): 1 139-1 145.

[34]

Guo Z, Miodownik A P, Saunders N, . Influence of Stackingfault Energy on High Temperature Creep of Apha Titanium Alloys [J]. Scripta Mater., 2006, 54(12): 2 175-2 178.

[35]

Wang G J, Zhao X C, Yang X R, . Texture Evolution in Commercially Pure Titanium after Equal Channel Angular Pressing at Room Temperature [J]. Mater. Sci. Tech-Lond., 2013, 29(8): 961-965.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/