Preparation of polyaniline/TiO2 composite nanotubes for photodegradation of AZO dyes

Yang Cheng , Liang An , Zongshan Zhao , Guanghui Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 468 -472.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 468 -472. DOI: 10.1007/s11595-014-0941-4
Article

Preparation of polyaniline/TiO2 composite nanotubes for photodegradation of AZO dyes

Author information +
History +
PDF

Abstract

Polyaniline (PANI) composite nanotubes (90–130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of â-naphthalenesulfonic acid (â-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.

Keywords

polyaniline / TiO2 / nanotube / photocatalysis

Cite this article

Download citation ▾
Yang Cheng, Liang An, Zongshan Zhao, Guanghui Wang. Preparation of polyaniline/TiO2 composite nanotubes for photodegradation of AZO dyes. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(3): 468-472 DOI:10.1007/s11595-014-0941-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang H M, Zhang K, Shi R R, . Sol-gel Synthesis of TiO2 Nanoparticles and Photocatalytic Degradation of Methyl Orange in Aqueous TiO2 Suspensions[J]. J. Alloys. Comp., 2006, 413: 302-306.

[2]

Arabatzis I M, Stergiopoulos T, Bernard M C, . Silver-modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange[J]. Appl. Catal.B: Environ., 2003, 42: 187-201.

[3]

Sakthivel S, Shankar M V, Palanichamy M, . Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst[J]. Water Res., 2004, 38: 3 001-3 008.

[4]

Tseng I H, Wu J C S, Chou H Y Effects of Sol-gel Procedures on the Photocatalysis of Cu/TiO2 in CO2 Photoreduction[J]. J. Catal., 2004, 221: 432-440.

[5]

Subramanian V, Wolf E, Kamat P Semiconductor-metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films[J]. J. Phys. Chem. B, 2001, 105: 11 439-11 446.

[6]

Harada M, Einaga H Photochemical Deposition of Platinum on TiO2 by Using Poly(vinyl alcohol) as an Electron Donor and a Protecting Polymer[J]. Catal. Commun., 2004, 5: 63-67.

[7]

Wu X H, Ding X B, Qin W, . Enhanced Photo-catalytic Activity of TiO2 Films with Doped La Prepared by Micro-plasma Oxidation Method[J]. J. Hazard. Mater. B., 2006, 137: 192-198.

[8]

Zhang X W, Zhou M H, Lei L C Co-deposition of Photocatalytic Fe Doped TiO2 Coatings by MOCVD[J]. Catal. Commun., 2006, 7: 427-431.

[9]

Hou X G, Hao F H, Fan B Sunlight Photocatalytic Activity of Polypyrrole-TiO2 Nanocomposites Prepared by ‘In Situ’ Method[J]. Nucl. Instr. Meth. Phys. Res. B: Beam. Inter. Mater. Atoms., 2006, 243: 99-104.

[10]

Zhou W Y, Zhou Y, Tang S Q Formation of TiO2 Nano-fiber Doped with Gd3+ and Its Photocatalytic Activity[J]. Mater. Lett., 2005, 59: 3 115-3 118.

[11]

Yang Y, Li X J, Chen J T Effect of Doping Mode on the Photocatalytic Activities of Mo/TiO2[J]. J. Photochem. Photobiol. A: Chem., 2004, 163: 517-522.

[12]

Song L, Qiu R L, Mo Y Q Photodegradation of Phenol in a Polymermodified TiO2 Semiconductor Particulate System Under the Irradiation of Visible Light[J]. Catal. Commun., 2007, 8: 429-433.

[13]

Zhang L X, Liu P, Su Z X Preparation of PANI-TiO2 Nanocomposites and Their Solid-phase Photocatalytic Degradation[J]. Polym. Degrad. Stabil., 2006, 91: 2 213-2 219.

[14]

Chowdhury D, Paul A, Chattopadhyay A Photocatalytic PPy-TiO2-Nanoparticles Composite Thin Film Generated at the Air-Water Interface[J]. Langmuir., 2005, 21: 4 123-4 128.

[15]

Ohtani B, Adzuma S, Nishimoto S, . Photocatalytic Degradation of Polyethylene Film by Incorporated Extra-fine Particles of Titanium Dioxide[J]. Polym. Degrad. Stab., 1992, 35: 53-60.

[16]

Cho S, Choi W Solid-phase Photocatalytic Degradation of PVC-TiO2 Polymer Composites[J]. J. Photochem. Photobiol. A, 2001, 143: 221-228.

[17]

Ding H, Shen J Y, Wan M X, . Formation Mechanism of Polyaniline Nanotubes by a Simplified Template[J]. Macromol. Chem. Phys., 2008, 209: 864-871.

[18]

Sivalingam G, Nagaveni K, Hegde M S Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO2[J]. Appl. Catal. B, 2003, 45: 23-38.

[19]

Chen S A, Lee H T Structure and Properties of Poly(acrylic acid)-doped Polyaniline[J]. Macromolecules, 1995, 28: 2 858-2 866.

[20]

Kim S G, Kim J W, Choi H J, . Synthesis and Electrorheological Characterization of Emulsion-polymerized Dodecyl-benzenesulfonic Acid Doped Polyaniline-based Suspensions[J]. Colloid. Polym. Sci., 2000, 78: 894-898.

[21]

Tang J S, Jing X B, Wang B C, . Infrared Spectra of Soluble Polyaniline[J]. Synth. Met., 1988, 24: 231-238.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/