ZnO films on transferable and low thermal resistance graphite substrate grown by ultrasonic spray pyrolysis

Jiming Bian , Xiaowen Ma , Jingchang Sun , Zhikun Zhang , Yuxin Wang , Fuwen Qin , Yingmin Luo , Yuzhi Zhang , Xianping Fu

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 428 -432.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (3) : 428 -432. DOI: 10.1007/s11595-014-0934-3
Article

ZnO films on transferable and low thermal resistance graphite substrate grown by ultrasonic spray pyrolysis

Author information +
History +
PDF

Abstract

ZnO thin films were deposited on graphite substrates by ultrasonic spray pyrolysis method with Zn(CH3COO)2·2H2O aqueous solution as precursor. The crystalline structure, morphology, and optical properties of the as-grown ZnO films were investigated systematically as a function of deposition temperature and growth time. Near-band edge ultraviolet (UV) emission was observed in room temperature photoluminescence spectra for the optimized samples, yet the usually observed defect related deep level emissions were nearly undetectable, indicating that high optical quality ZnO thin films could be achieved via this ultrasonic spray pyrolysis method. Considering the features of transferable and low thermal resistance of the graphite substrates, the achievement will be of special interest for the development of high-power semiconductor devices with sufficient power durability.

Keywords

ZnO / graphite / photoluminescence / transferable devices

Cite this article

Download citation ▾
Jiming Bian, Xiaowen Ma, Jingchang Sun, Zhikun Zhang, Yuxin Wang, Fuwen Qin, Yingmin Luo, Yuzhi Zhang, Xianping Fu. ZnO films on transferable and low thermal resistance graphite substrate grown by ultrasonic spray pyrolysis. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(3): 428-432 DOI:10.1007/s11595-014-0934-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bian J M, Liu W F, Liang H W, . Room Temperature Electroluminescence from The n-ZnMgO/ZnO/p-ZnMgO Heterojunction Device Grown by Ultrasonic SPyrolysis[J]. Chem. Phys. Lett., 2006, 430(1–3): 183-187.

[2]

Özgür Alivov Y I, Liu C, . A Comprehensive Review of ZnO Materials and Devices[J]. J. Appl. Phys., 2005, 98(4): 041301-1-103.

[3]

Liang H K, Yu S F, Yang H Y ZnO Random Laser Diode Arrays for Stable Single-Mode Operation at High Power[J]. Appl. Phys. Lett., 2010, 97(24): 241107-1-3.

[4]

Sun J C, Feng Q J, Bian J M, . Ultraviolet Electroluminescence from ZnO-Based Light-Emitting Diode with p-ZnO:N/n-GaN:Si Heterojunction Structure[J]. J. Lumin., 2011, 131(4): 825-828.

[5]

Tsukazaki A, Ohtomo A, Onuma T, . Repeated Temperature Modulation Epitaxy for p-type Doping and Light-Emitting Diode Based on ZnO[J]. Nat. Mater., 2005, 4(1): 42-46.

[6]

Norton D P, Heo Y W, Ivill M P, . ZnO: Growth, Doping & Processing[J]. Mater. today, 2004, 7(6): 34-40.

[7]

Ashrafi ABMA, Ueta A, Avramescu A, . Growth and Characterization of Hypothetical Zinc-Blende ZnO Films on GaAs(001) Substrates with ZnS BLayers[J]. Appl. Phys. Lett., 2000, 76(5): 550-552.

[8]

Kaidashev E M, Lorenz M, von Wenckstern H, . High Electron Mobility of Epitaxial ZnO Thin Films on c-Plane Sapphire Grown by Multistep Pulsed-Laser Deposition[J]. Appl. Phys. Lett., 2003, 82(22): 3 901-3 903.

[9]

Xu W Z, Ye Z Z, Zeng Y J, . ZnO Light-Emitting Diode Grown by Plasma-Assisted Metal Organic Chemical Vapor Deposition[J]. Appl. Phys. Lett., 2006, 88(17): 173 506-1-3.

[10]

Ohtomo A, Tamura K, Saikusa K, . Single Crystalline ZnO Films Grown on Lattice-Matched ScAlMgO4(0001) Substrates[J]. Appl. Phys. Lett., 1999, 75(17): 2 635-2 637.

[11]

Bian J M, Li X M, Chen L D, . Properties of Undoped n-Type ZnO Film and N-In Codoped p-Type ZnO Film Deposited by Ultrasonic Spray Pyrolysis[J]. Chem. Phys. Lett., 2004, 393(1–3): 256-259.

[12]

Lee C H, Kim S J, Oh Y, . Use of Laser Lift-off for Flexible Device Applications[J]. J. Appl. Phys., 2010, 108(10): 102 814-1-5.

[13]

Chung K, Lee C H, Yi G C Transferable GaN Layers Grown on ZnOCoated Graphene Layers for Optoelectronic Devices[J]. Science, 2010, 330(6004): 655-657.

[14]

Bian J M, Liu W F, Sun J C, . Synthesis and Defect-Related Emission of ZnO Based Light Emitting Device with Homo- and Heterostructure[J]. J. Mater. Process. Tech., 2007, 184(1–3): 451-454.

[15]

Du G T, Liu W F, Bian J M, . Room Temperature Defect Related Electroluminescence from ZnO Homojunctions Grown by Ultrasonic Spray Pyrolysis[J]. Appl. Phys. Lett., 2006, 89(5): 052 113-1-3.

[16]

Zhong A H, Tan J, Huang H L, . Thickness Effect on The Evolution of Morphology and Optical Properties of ZnO Films[J]. Appl. Surf. Sci., 2011, 257(9): 4 051-4 055.

[17]

Sun Y, Ketterson J B, Wong GKL Excitonic Gain and Stimulated Ultraviolet Emission in Nanocrystalline Zinc-Oxide Powder[J]. Appl. Phys. Lett., 2000, 77(15): 2 322-2 324.

[18]

Sim AYL, Goh GKL, Tripathy S, . Photoluminescence of Hydrothermally Epitaxied ZnO Films[J]. Electrochim. Acta, 2007, 52(8): 2 933-2 937.

[19]

Look D C, Hemsky J W, Sizelove J R Residual Native Shallow Donor in ZnO[J]. Phys. Rev. Lett., 1999, 82(12): 2 552-2 555.

[20]

Shan F K, Liu G X, Lee W J, . The Role of Oxygen Vacancies in Epitaxial-Deposited ZnO Thin Films[J]. J. Appl. Phys., 2007, 101(5): 053 106-1-8.

[21]

Wang Y G, Lau S P, Zhang X H, . Observations of Nitrogen-Related Photoluminescence Bands from Nitrogen-Doped ZnO Films[J]. J. Cryst. Growth., 2003, 252(1–3): 265-269.

[22]

Lee Y C, Hu S Y, Water W, . Rapid Thermal Annealing Effects on The Structural and Optical Properties of ZnO Films Deposited on Si Substrates[J]. J. Lumin., 2009, 129(2): 148-152.

[23]

Zu P, Tang Z K, Wong GKL, . Ultraviolet Spontaneous and Stimulated Emissions from ZnO Microcrystallite Thin Films at Room Temperature[J]. Solid State Commun., 1997, 103(8): 459-463.

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/