Effects of aluminum doping on the microstructure and electrical properties of ZnO-Pr6O11-Co3O4-MnCO3-Y2O3 varistor ceramics

Maohua Wang , Bo Zhang , Gang Li , Chao Yao

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (2) : 246 -249.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (2) : 246 -249. DOI: 10.1007/s11595-014-0902-y
Advanced Materials

Effects of aluminum doping on the microstructure and electrical properties of ZnO-Pr6O11-Co3O4-MnCO3-Y2O3 varistor ceramics

Author information +
History +
PDF

Abstract

The effect of Al2O3 doping on the microstructure and electrical properties of the ZnO-Pr6O11-Co3O4-MnCO3-Y2O3 system was investigated in the range of 0.0–0.1mol%. The results reveal that Al2O3 doping has slight influence on the densification process. The microstructure of the ceramics comprises of ZnO phase, ZnAl2O4 spine phase and Pr-rich phases. The addition of Al2O3 greatly affects the electrical properties. The varistor voltage (E 1mA/cm 2) of ZPCMYAl samples decreases over a wide range from 5 530 V/cm to 1 844 V/cm with the increasing Al2O3 content. The nonlinear exponent(α) increases with the increasing Al2O3 content to 0.01mol%, whereas it is decreased by the further doping. The ZPCMYAl-based varistor ceramics with 0.01mol% Al2O3 exhibit the best electrical properties, with the nonlinear exponent (α) attaining the highest value of 33.4 and the lowest leakage current of 2.7 μA. The capacitance-voltage (C-V) measurement shows that the donor density (N d) at the grain boundaries increase from 1.58×1018 to 3.15×1018 cm−3, the barrier height (φ b) increases from 1.60 to 2.36 eV, and the depletion layer width (t) decreases from 24.9 to 21.6 nm.

Keywords

microstructure / electrical properties / Al2O3 doping / varistors

Cite this article

Download citation ▾
Maohua Wang, Bo Zhang, Gang Li, Chao Yao. Effects of aluminum doping on the microstructure and electrical properties of ZnO-Pr6O11-Co3O4-MnCO3-Y2O3 varistor ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(2): 246-249 DOI:10.1007/s11595-014-0902-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta TK Application of A Zinc Oxide Varistor[J]. Am. Ceram. Soc., 1990, 73(7): 1 817-1 840.

[2]

Matsuoka M Nonohmic Properties of Zinc Oxide Ceramics[J]. Appl. Phys., 1971, 10(6): 736-746.

[3]

Leach C Crystallographic Control of the Barrier Structure in Zinc Oxide Varistors[J]. Int. Inorg. Mater., 2001, 3(8): 1 117-1 126.

[4]

Carlson WG, Gupta TK Improved Varistor Nonlinearity Via Donor Impurity Doping[J]. Appl. Phys., 1982, 53(8): 5 746-5 753.

[5]

Gupta TK Effect of Minor Doping on the High Current Application of the ZnO Varistor[J]. Ferroelectrics, 1990, 102(1): 391-396.

[6]

Levinson LM, Philipp HR The Physics of Metal Oxide Varistors[J]. Appl. Phys., 1975, 46(3): 1 332-1 34.

[7]

Han JP, Mantas PQ, Senos AMR Effect of Al and Mn Doping on the Electrical Conductivity of ZnO[J]. Eur. Ceram. Soc., 2001, 21(10–11): 1 883-1 886.

[8]

Gupta TK Microstructural Engineering Through Donor and Acceptor Doping in the Grain and Grain Boundary of a Polycrystalline Semiconducting Ceramics[J]. Mater. Res., 1992, 7(12): 3 280-3 295.

[9]

Ott J, Lorenz A, Hamier M, . The Influence of Bi2O3 and Sb2O3 on the Electrical Properties of ZnO-Based Varistors[J]. Electroceram., 2001, 6(2): 135-146.

[10]

Senda T, Bradt R Grain Growth in Sintering ZnO and ZnO-Bi2O3 Ceramics[J]. Am.Ceram.Soc., 1990, 73(1): 106-114.

[11]

Nahm CW The Electrical Properties and DC Degradation Characteristics of Dy2O3 Doped Pr6O11-based ZnO Varistors[J]. Eur. Ceram. Soc., 2001, 21(4): 545-553.

[12]

Fan J, Freer R The Roles Played by Ag and Al Dopants in Controlling the Electrical Properties of ZnO Varistors. J. Appl. Phys., 1995, 77(9): 4 795-4 798.

[13]

Bemik S, Daneu N Characteristics of ZnO-based Varistor Ceramics Doped with Al2O3[J]. Eur. Ceram. Soc., 2007, 27(10): 3 161-3 170.

[14]

Nahm CW The Effect of Sintering Temperature on Varistor Properties of (Pr, Co, Cr, Y, Al) -doped Pr6O11 ZnO Ceramics[J]. Mater. Lett., 2008, 62(29): 4 440-4 442.

[15]

Wunst JC, Nelson JA Lineal Intercept for Measuring Grain Size in Two-phase Polycrystalline Ceramic[J]. Am. Ceram. Soc., 1972, 55(2): 109-111.

[16]

Nahm CW Microstructure and Electrical Properties of Al2O3-doped ZPCCYA-based Varistors[J]. Mater. Lett., 2008, 62(17–18): 2 900-2 903.

[17]

Bueno PR, Cassia SMR, Leite ER, . Nature of Schottky-type Barrier of Highly Dense SnO2 Systems Displaying Nonohmic Hehavior[J]. Appl. Phys., 2000, 88(11): 6 545-6 548.

[18]

Nahm CW, Shin BC, Min BH Microstructure and Electrical Properties of Y2O3-doped ZnO-Pr6O11-based Varistor Ceramics[J]. Mater. Chem. Phys., 2003, 82(1): 157-164.

[19]

Mukae K, Tsuda K, Nagasawa I Capacitance-v.s-voltage Characteristics of ZnO Varistors[J]. Appl. Phs., 1979, 50(6): 4 475-4 476.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/