Optimal electrochemical performances of CO2 activated carbon aerogels for supercapacitors

Lijuan Chang , Zhibing Fu , Miao Liu , Lei Yuan , Jianjun Wei , Yong wei He , Xichuan Liu , Chaoyang Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (2) : 213 -218.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (2) : 213 -218. DOI: 10.1007/s11595-014-0895-6
Advanced Materials

Optimal electrochemical performances of CO2 activated carbon aerogels for supercapacitors

Author information +
History +
PDF

Abstract

Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized by scanning electron microscopy (SEM) and the structural properties were determined by N2 adsorption at 77 K. The results show that ACAs have a typical three-dimensional nanonetwork structure composing of cross-linking of carbon nanoparticles. The specific surface area and the total pore volume remarkably increase with increasing activation time while the previous porous structure still remains. The specific capacitance of the 950-10-ACA electrode can reach up to 212.3 F/g in 6 mol/L KOH electrolyte. The results of constant-current charge-discharge testing indicate that the ACAs electrodes present fast charge-discharge rate and long cycle life (about 98% capacitance retained after 3000 charge-discharge cycles at 1.25 mA/cm2). Lower internal resistances can be achieved for 950-10-ACA electrode in KOH electrolyte. Our investigations are very important to improve the wettability and electrochemical performance of electrode for supercapacitors.

Keywords

activated carbon aerogels / specific surface area / specific capacitance / wettability / cycling performance

Cite this article

Download citation ▾
Lijuan Chang, Zhibing Fu, Miao Liu, Lei Yuan, Jianjun Wei, Yong wei He, Xichuan Liu, Chaoyang Wang. Optimal electrochemical performances of CO2 activated carbon aerogels for supercapacitors. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(2): 213-218 DOI:10.1007/s11595-014-0895-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pognon G, Brousse T, Bélanger D Effect of Molecular Grafting on the Pore Size Distribution and the Double Layer Capacitance of Activated Carbon for Electrochemical Double Layer Capacitors[J]. Carbon, 2011, 49(4): 1 340-1 348.

[2]

Burke A Ultracapacitors: Why, How, and Where is the Technology[J]. J. Power Sources, 2000, 91(1): 37

[3]

Yi B, Chen XH, Zeng B, . Gelatin-based Activated Carbon with Carbon Nanotubes as Framework for Electric Double-layer Capacitors[J]. J. Porous Mater., 2012, 19(1): 37-44.

[4]

Luo HM, Zhang FB, Yang P Preparation and Electrochemical Properties of CPAC/Mn3O4 Nanocomposite Electrode[J]. J. Mater. Sci. Mater. Electron., 2013, 24(2): 601

[5]

YL, Shao GJ, Zhao BL, . Influence of La-dopant on the Material Characteristics and Supercapacitive Performance of MnO2 Electrodes[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011 33-37.

[6]

Kinoshita K In Carbon: Electrochemical and Physicochemical Properties[M], 1988 New York Wiley

[7]

Shi H Activated Carbons and Double Layer Capacitance[J]. Electrochim. Acta, 1996, 41(10): 1 633-1 639.

[8]

Benabithe ZZ, Marín FC, Castilla CM Preparation, Surface Characteristics, and Electrochemical Double-layer Capacitance of KOH-activated Carbon Aerogels and Their O- and N-doped Derivatives[J]. J. Power Sources, 2012, 219: 80

[9]

Azais P, Duclaux L, Florian P, . Causes of Supercapacitors Aging in Organic Electrolyte[J]. J. Power Sources, 2007, 171(2): 1 046-1 053.

[10]

Ruiza V, Blanco C, Santamaría R, . An Activated Carbon Monolith as an Electrode Material for Supercapacitors[J]. Carbon, 2009, 47(1): 195-200.

[11]

Gamby J, Taberna PL, Simon P, . Studies and Characterisations of Various Activated Carbons Used for Carbon/carbon Supercapacitors[J]. J. Power Sources, 2001, 101(1): 109-116.

[12]

Lin C, Ritter JA, Popov BN A Mathematical Model of an Electrochmical Capacitor with Double-layer and Faradaic Process[J]. J. Electrochem. Soc., 1999, 146(9): 3 168-3 175.

[13]

Saliger R, Fischer U, Herta C High Surface Area Carbon Aerogels for Supercapacitors[J]. Non-Cryst. Solids, 1998, 225: 81-85.

[14]

Li WC, Reichenauer G, Fricke J Carbon Aerogels Derived from Cresol-resorcinol-formaldehyde for Supercapacitors[J]. Carbon, 2002, 40(15): 2 955-2 959.

[15]

Liu HY, Wang KP, Teng H A Simplified Preparation of Mesoporous Carbon and the Examination of the Carbon Accessibility for Electric Double Layer Formation[J]. Cabon, 2005, 43(3): 559-566.

[16]

Ye JS, Liu X, Cui HF, . Electrochemical Oxidation of Multiwalled Carbon Nanotubes and Its Application to Electrochemical Double Layer Capacitors[J]. Eletrochem. Commun., 2005, 7(3): 249-255.

[17]

Wang L, Lin S, Lin K, . A Facile Synthesis of Highly Ordered Mesoporous Carbon Monolith with Mechanically Stable Mesostructure and Superior Conductivity from SBA-15 Powder[J]. Microporous Mesoporous Mater., 2005, 85(1–2): 136-142.

[18]

Chen Z, Qin Y, Weng D, . Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage[J]. Adv. Funct. Mater., 2009, 19(21): 3420-3426.

[19]

Huang CW, Wu YT, Hu CC, . Textural and Electrochemical Characterization of Porous Carbon Nanofibers as Electrodes for Supercapacitors[J]. J. Power Sources, 2007, 172(1): 460-467.

[20]

Bao L, Zang J, Li X Flexible Zn2SnO4/MnO2 Core/Shell Nanocablecarbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes[J]. Nano Lett., 2011, 11(3): 1 215-1 220.

[21]

Pandolfo AG, Hollenkamp AF Carbon Properties and Their Role in Supercapacitors[J]. J. Power Sources, 2006, 157(1): 11-27.

[22]

Winter M, Brodd RJ What are Batteries, Fuel Cells, and Supercapacitors[J]?. Chem. Rev., 2004, 104(10): 4 245-4 270.

[23]

Inagaki M, Konno H, Tanaike O Carbon Materials for Electrochemical Capacitors[J]. J. Power Sources, 2010, 195(24): 7 880-7 903.

[24]

Toupin M, Bélanger D, Hill L e al Performance of Experimental Carbon Blacks in Aqueous Supercapacitors[J]. J. Power Sources, 2005, 140(1): 203-210.

[25]

Fang B, Wei YZ, Maruyama K, . High Capacity Supercapacitors Based on Modified Activated Carbon Aerogel[J]. J. Appl. Electrochem., 2005, 35(3): 229-233.

[26]

Hanzawa Y, Kaneko K, Pekala RW, . Activated Carbon Aerogels[J]. Langmuir, 1996, 12(26): 6 167-6 168.

[27]

Luo HM, Yang P, Zhang FB Preparation and Electrochemical Properties of Coke Powder Activated Carbon based Electrode Materials[J]. J. Mater. Sci. Mater. Electron., 2013, 24(24): 586

[28]

Wang JB, Yang XQ, Wu DC, . The Porous Structures of Activated Carbon Aerogels and Their Effects on Electrochemical Performance[J]. J. Power Sources, 2008, 185(1): 589-594.

[29]

Zhao HX, Zhu YD, Li WC, . Pore Structure Modification and Electrochemical Performance of Carbon Aerogels from Resorcinol and Formaldehyde[J]. New Carbon Mater., 2008, 23(4): 361-366.

[30]

Pekala RW, Alviso CT Carbon Aaerogels and Xerogels[J]. Mater. Res. Soc. Symp. Process, 1992, 270: 3

[31]

Fuertes AB, Pico F, Rojo JM Influence of Pore Structure on Electric Double-layer Capacitance of Template Mesoporous Carbons[J]. J. Power Sources, 2004, 133(2): 333

[32]

Hu J, Wang HL, Gao QM, . Porous Carbons Prepared by Using Metal-organic Framework as the Precursor for Supercapacitors[J]. Carbon, 2010, 48(12): 3 600-3 603.

[33]

Xiang CC, Ming L, Zhi MJ, . A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode[J]. J. Power Sources, 2013, 226(15): 66

[34]

Yang RT. In Fundamentals and Applications[M]. Wiley J. Hoboken, ed., New Jersey, 2003, 8–17

[35]

Lu HL, Dai WJ, Zheng MB Electrochemical Capacitive Behaviors of Ordered Mesoporous Carbons with Controllable Pore Sizes[J]. J. Power Sources, 2012, 209(1): 248

[36]

Román MC, Cazorla-Amoros D, Linares-Solano A, . TPD and TPR Characterization of Carbonaceous Supports and Pt/C Catalysts[J]. Carbon, 1993, 31(6): 895-902.

[37]

Figueiredo JL, Pereira MFR, Freitas MMA, . Modification of the Surface Chemistry of Activated Carbons[J]. Carbon, 1999, 37(9): 1 379-1 389.

[38]

Wang XY, Liu L, Wang XY, . Preparation and Performances of Carbon Aerogel Microspheres for the Application of Supercapacitor[J]. J. Solid State Electrochem., 2011, 15(4): 646-648.

[39]

Kim SJ, Hwang SW, Hyun SH Preparation of Carbon Aerogel Electrodes for Supercapacitor and their Electrochemical Characteristics[J]. J. Mater. Sci., 2005, 40(3): 725-731.

[40]

Dong B, He BL, Xu CL, . Preparation and Electrochemical Characterization of Polyaniline/Multiwalled Carbon Nanotubes Composites for Supercapacitor[J]. Mater. Sci. and Eng. B, 2007, 143(1–3): 7-13.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/