A novel technique for preparation of electrically conductive ABS/Cu polymeric gradient composites

Chunhua Huan , Bianying Wen

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 1003 -1007.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 1003 -1007. DOI: 10.1007/s11595-013-0808-0
Organic Material

A novel technique for preparation of electrically conductive ABS/Cu polymeric gradient composites

Author information +
History +
PDF

Abstract

A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes’ law. Acrylonitrilebutadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 1015 Ω at ABS rich side, while that declined to 105 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vol%–4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.

Keywords

electrically conductive composite / functionally gradient materials / Stokes’ law / solution casting / ABS / Cu

Cite this article

Download citation ▾
Chunhua Huan, Bianying Wen. A novel technique for preparation of electrically conductive ABS/Cu polymeric gradient composites. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(5): 1003-1007 DOI:10.1007/s11595-013-0808-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim M S, Kim H K, Byun S W, . PET Fabric/Polypyrrole Composite with High Electrical Conductivity for EMI Shielding[J]. Synth. Met., 2002, 126(2–3): 233-239.

[2]

Stru Mpler R, Glatz-Reichenbach J Conducting Polymer Composites [J]. J. Electroceram., 1999, 3(4): 329-346.

[3]

Gordana N B J K Conducting Polymer Materials [J]. Hemijska Industrija, 2003, 57(11): 511-525.

[4]

Dharaiya D P, Jana S C, Lyuksyutov S F Production of Electrically Conductive Networks in Immiscible Polymer Blends by Chaotic Mixing [J]. Polym. Eng. Sci., 2006, 46(1): 19-28.

[5]

Zhang M Q, Xu J R, Zeng H M, . Fractal Approach to the Critical Filler Volume Fraction of An Electrically Conductive Polymer Composite [J]. J. Mater. Sci., 1995, 30(17): 4 226-4 232.

[6]

Yi X, Wu G, Pan Y Properties and Applications of Filled Conductive Polymer Composites [J]. Polym. Int., 1997, 44(2): 117-124.

[7]

Tan S, Zhang M, Rong M Study on Properties of Metal Fibre Filled Polymer Composites [J]. J. Mater. Eng. Perform., 1998 15-17.

[8]

Baloguna Y A, Buchanan R C Enhanced Percolative Properties from Partial Solubility Dispersion of Filler Phase in Conducting Polymer Composites (CPCs) [J]. Compos. Sci. Technol., 2010, 70(6): 892-900.

[9]

Coleman J N, Khana U, Blaua W J, . Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites [J]. Carbon, 2006, 44(9): 1 624-1 652.

[10]

Ajayan P M, Zhou O Z Applications of Carbon Nanotubes[J]. Carbon Nanotubes, 2001, 80: 391-425.

[11]

Wen B, Li Q, Hou S, . Structure Study of Polymer Gradient Materials[J]. Mater. Sci. Forum, 2003, 423–425: 509-514.

[12]

Koizumi M FGM Activities in Japan [J]. Composites Part B, 1997, 28(1–2): 1-4.

[13]

Yumin Z, Xiaodong H, Jiecai H Functionally Gradient Materials [J]. Aerospace Materials & Technology, 1998, 28(5): 5-10.

[14]

Tandon R P, Tripathy M R, Arora A K, . Gas and Humidity Response of Iron Oxide-Polypyrrole Nanocomposites[J]. Sens. Actuators B, 2006, 114(2): 768-773.

[15]

Mallick K, Witcomb M J, Scurrell M S Palladium Nanoparticles in Poly(o-phenylenediamine): Synthesis of a Nanostructured ‘Metal-Polymer’ Composite Material [J]. J. Macromol. Sci., 2006, 43(9): 1 469-1 476.

[16]

Bouazza S, Alonzob V, Haucharda D Synthesis and Characterization of Ag Nanoparticles-Polyaniline Composite Powder Material [J]. Synth. Met., 2009, 159(15–16): 1 612-1 619.

[17]

Xing L, Liu J Development of Resistance Gradual Variation Radar-Absorbing Composites[J]. Journal of Aeronautical Materials, 2000, 20(3): 187-191.

[18]

Feller J F, Langevin D, Marais S Influence of Processing Conditions on Sensitivity of Conductive Polymer Composites to Organic Solvent Vapours [J]. Synth. Met., 2004, 144(1): 81-88.

[19]

Abargues R, Abderrafi K, Pedrueza E, . Optical Properties of Different Polymer Thin Films Containing In Situ Synthesized Ag and Au Nanoparticles [J]. New J. Chem., 2009, 33: 1 720-1 725.

[20]

Mamunya Y P, Davydenko V V, Pissis P, . Electrical and Thermal Conductivity of Polymers Filled with Metal Powders [J]. Eur. Polym. J., 2002, 38(9): 1 887-1 897.

[21]

Zeng Y, Jiang D Fabrication and Properties of Tape-Cast Laminated and Functionally Gradient Alumina-Titanium Carbide Materials [J]. J. Am. Ceram. Soc., 2000, 83(12): 2 999-3 003.

[22]

Wen B Y, Huan C H Electrically Conductive Polymeric Gradient Composites and Its Preparing Method[P], 2011

[23]

Rubey W W Settling Velocity of Gravel, Sand, and Silt Particles [J]. American Journal of Science, 1993, 25: 325-338.

[24]

Cygan D A, Caswell B Precision Falling Sphere Viscometry [J]. J. Rheol., 1971, 15(4): 663-683.

[25]

Svedberg T, Nichols J B Determination of Size and Distribution of Size of Particle by Centrifugal Methods [J]. JACS, 1923, 45(12): 2 910-2 917.

[26]

Wen B, Ye Z Performance of ABS/Cu Powder Conductive Composites [J]. Modern Plastics Processing and Applications, 2010, 22(1): 13-17.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/