Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex

Yongyue Luo , Chunfang Feng , Qinghuang Wang , Zhifeng Yi , Quanfang Qiu , Kong Lx , Zheng Peng

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 997 -1002.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 997 -1002. DOI: 10.1007/s11595-013-0807-1
Organic Material

Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex

Author information +
History +
PDF

Abstract

Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The microstructure of SiO2 and nanocomposites with different SiO2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60–100 nm at the low content (SiO2≤ 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NR/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.

Keywords

natural rubber / silica / nanocomposite / latex compounding / rule of similarity

Cite this article

Download citation ▾
Yongyue Luo, Chunfang Feng, Qinghuang Wang, Zhifeng Yi, Quanfang Qiu, Kong Lx, Zheng Peng. Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(5): 997-1002 DOI:10.1007/s11595-013-0807-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Maznah KS, Baharin A, Hanafi I, . Effect of Soaking in Potassium Hydroxide Solution on the Curing, Tensile Properties and Extractable Protein Content of Natural Rubber Latex Films [J]. Polym. Test., 2008, 27(8): 1 013-1 016.

[2]

Kato A, Kohjiya S, Ikeda Y Nanostructure in Traditional Composites of Natural Rubber and Reinforcing Silica[J]. Rubber Chem Technol., 2007, 80(4): 690-700.

[3]

Chaichua B, Prasassarakich P, Poompradub S In Situ Silica Reinforcement of Natural Rubber by Sol-gel Process via Rubber Solution [J]. J. Sol-Gel Sci. Technol., 2009, 52(2): 219-227.

[4]

Riaz U, Ahmad S, Ahmad SA, . Effect of Processing Conditions on the Characteristics of Nanostructured Composites of Poly(1-naphthylamine) [J]. Adv. Polym. Tech., 2008, 27(1): 40-46.

[5]

Di Gianni A, Amerio E, Monticelli O, . Preparation of Polymer/clay Mineral Nanocomposites via Dispersion of Silylated Montmorillonite in a UV Curable Epoxy Matrix[J]. Appl. Clay Sci., 2008, 42(1–2): 116-124.

[6]

Yao K, Wei Z, Dong AM, . A Novel Polymer Nanocomposite: Polystyrene-layered Methylbenzamidephenylsilica[J]. Macromolecules, 2009, 42(22): 9 190-9 194.

[7]

Sahu AK, Bhat SD, Pitchumani S, . Novel Organic-inorganic Composite Polymer-electrolyte Membranes for DMFCs [J]. J. Membrane Sci., 2009, 345(1–2): 305-314.

[8]

De Sarkar M, Deb P Synthesis and Characterization of Hybrid Nanocomposites Comprising Poly(vinyl alcohol) and Colloidal Silica [J]. Adv. Polym. Tech., 2008, 27(3): 152-162.

[9]

Prasertsri S, Rattanasom N Mechanical and Damping Properties of Silica/natural Rubber Composites Prepared from Latex System[J]. Polymer Testing, 2011, 30(5): 515-526.

[10]

Vinod VS, Varghese S, Kuriakose B Degradation Behaviour of Natural Rubber-aluminium Powder Composites: Effect of Heat, Ozone and High Energy Radiation[J]. Polymer Degradation and Stability, 2002, 75(3): 405-412.

[11]

Lee C-W, Hwang T, Nam G-Y, . A Novel Synthetic Route to Natural Rubber/Montmorillonite Nanocomposites Using Colloid Stabilization-destabilization Method [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1 826-1 832.

[12]

Carretero-González J, Valentín JL, Arroyo M, . Natural Rubber/clay Nanocomposites: Influence of Poly(ethylene glycol) on the Silicate Dispersion and Local Chain Order of Rubber Network[J]. European Polymer Journal, 2008, 44(11): 3 493-3 500.

[13]

Peng Z, Feng C, Luo Y, . Self-assembled Natural Rubber/multiwalled Carbon Nanotube Composites Using Latex Compounding Techniques [J]. Carbon, 2010, 48(15): 4 497-4 503.

[14]

Peng Z, Kong LX, Li SD, . Polyvinyl Alcohol/Silica Nanocomposite: Its Morphology and Thermal Degradation Kinetics[J]. J. Nanosci. Nanotech., 2006, 6(12): 3 934-3 938.

[15]

Li SD, Peng Z, Kong LX, . Thermal Degradation Kinetics and Morphology of Natural Rubber/Silica Nanocomposites[J]. J. Nanosci. Nanotech., 2006, 6: 541-546.

[16]

Peng Z, Kong LX, Li SD, . Self-assembled Natural Rubber/Silica Nanocomposites: Its Preparation and Characterization [J]. Compos. Sci. Technol., 2007, 67(15–16): 3 130-3 139.

[17]

Yorifuji D, Matsumura A, Aoki T, . Optical and Thermal Properties of Organo-silica/Polyimide Nano-hybrids Derived from Polysiloxazane Copolymers [J]. J. Photopolym. Sci. Technol., 2009, 22(4): 447-454.

[18]

Susteric Z, Kos T Rheological Idiosyncrasies of Elastomer/Clay Nanocomposites [J]. Applied Rheology, 2008, 18(5): 1 430-1 439.

[19]

Zhao YY, Qiu ZB, Yang WT Effect of Functionalization of Multiwalled Nanotubes on the Crystallization and Hydrolytic Degradation of Biodegradable Poly(L-lactide) [J]. J. Phys. Chem. B, 2008, 112(51): 16 461-16 468.

[20]

Chinthamanipeta PS, Kobukata S, Nakata H, . Synthesis of Poly(methyl methacrylate)-silica Nanocomposites Using Methacrylatefunctionalized Silica Nanoparticles and RAFT Polymerization [J]. Polymer, 2008, 49(26): 5 636-5 642.

[21]

Katsikis N, Zahradnik F, Helmschrott A, . Thermal Stability of Poly(Methyl Methacrylate)/Silica nano- and Microcomposites as Investigated by Dynamic-mechanical Experiments[J]. Polym. Degrad. Stab., 2007, 92(11): 1 966-1 976.

[22]

Riello P, Munarin M, Silvestrini S, . X-ray Powder Diffraction Quantitative Analysis of an Amorphous SiO2-poly(Methyl Methacrylate) Nanocomposite[J]. J. Appl. Crystallogr., 2008, 41: 985-990.

[23]

Yeh JM, Huang KY, Dai CF, . Organic-acid-catalyzed Sol-gel Route for Preparing Poly(methyl methacrylate)-silica Hybrid Materials [J]. J. Appl. Polym. Sci., 2008, 110(4): 2 108-2 114.

[24]

Yan H, Tian G, Sun K, . Effect of Silane Coupling Agent on the Polymer-filler Interaction and Mechanical Properties of Silica-filled NR [J]. Polym. Phys., 2005, 43: 573-584.

[25]

Sombatsompop N, Wimolmala E, Markpin T Fly-ash Particles and Precipitated Silica as Fillers in Rubbers. II. Effects of Silica Content and Si69-treatment in Natural Rubber/Styrene-butadiene Rubber Vulcanizates [J]. J. Appl. Polym. Sci., 2007, 104(5): 3 396-3 405.

[26]

Ostad-Movahed S, Yasin KA, Ansarifar A, . Comparing Effects of Silanized Silica Nanofiller on the Crosslinking and Mechanical Properties of Natural Rubber and Synthetic Polyisoprene [J]. J. Appl. Polym. Sci., 2008, 109(2): 869-881.

[27]

Xu P, Wang HT, Tong R, . Preparation and Morphology of SiO2/PMMA Nanohybrids by Microemulsion Polymerization [J]. Colloid Polym. Sci., 2006, 284(7): 755-762.

[28]

Hong RY, Fu HP, Zhang YJ, . Surface-modified Silica Nanoparticles for Reinforcement of PMMA [J]. J. Appl. Polym. Sci., 2007, 105(4): 2 176-2 184.

[29]

Kashiwagi T, Morgan AB, Antonucci JM, . Thermal and Flammability Properties of a Silica-poly(methylmethacrylate) Nanocomposite [J]. J. Appl. Polym. Sci., 2003, 89: 2 072-2 078.

[30]

Bokobza L, Chauvin JP Reinforcement of Natural Rubber: Use of in Situ Generated Silicas and Nanofibres of Sepiolite [J]. Polymer, 2005, 46(12): 4 144-4 151.

[31]

Magaraphan R, Thaijaroen W, Lim-Ochakun R Structure and Properties of Natural Rubber and Modified Montmorillonite Nanocomposites[J]. Rubber Chem. Technol., 2003, 76: 406-418.

[32]

Varghese S, Karger-Kocsis J Natural Rubber-based Nanocomposites by Latex Compounding with Layered Silicates [J]. Polymer, 2003, 44: 4 921-4 927.

[33]

Saito R, Tobe T Electrical Properties of Poly(2-vinyl pyridine)/Silica Nanocomposites Prepared with Perhydropolysilazane [J]. Polym. Adv. Technol., 2005, 16(2-3): 232-238.

[34]

Shen L, Zhong W, Wang H, . Preparation and Characterization of SMA(SAN)/Silica Hybrids Derived from Water Glass [J]. J. Appl. Polym. Sci., 2004, 93: 2 289-2 296.

[35]

Tanahashi M, Hirose M, Watanabe Y, . Silica/Perfluoropolymer Nanocomposites Fabricated by Direct Melt-compounding: A Novel Method without Surface Modification on Nano-silica [J]. J. Nanosci. Nanotech., 2007, 7(7): 2 433-2 442.

[36]

Chen JJ, Zhu CF, Deng HT, . Preparation and Characterization of the Waterborne Polyurethane Modified with Nanosilica [J]. J. Polym. Res., 2009, 16(4): 375-380.

[37]

Yu HP, Li SD, Zhong JP, . Studies of Thermooxidative Degradation Process of Chlorinated Natural Rubber from Latex[J]. Thermochim. Acta, 2004, 410: 119-124.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/