Fabrication of Fe2O3@polypyrrole nanotubes and the catalytic properties under the ultrasound

Chunnian Chen , Wen Fu , Qian Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 990 -996.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 990 -996. DOI: 10.1007/s11595-013-0806-2
Organic Material

Fabrication of Fe2O3@polypyrrole nanotubes and the catalytic properties under the ultrasound

Author information +
History +
PDF

Abstract

Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol·L−1 HCl. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.

Keywords

Fe2O3 nanotubes / composites / polypyrrole / polymerisation / catalysis / rhodamine B

Cite this article

Download citation ▾
Chunnian Chen, Wen Fu, Qian Zhou. Fabrication of Fe2O3@polypyrrole nanotubes and the catalytic properties under the ultrasound. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(5): 990-996 DOI:10.1007/s11595-013-0806-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown A S S, Hargreaves J S J A Study of the Structural and Catalytic Effects of Sulfation on Iron Oxide Catalysts Prepared From Goethite and FerrihyDrite Precursors for Methane Oxidation[J]. Catal. Lett., 1998, 53(1/2): 7-13.

[2]

Cornell R M, Schwertmann U The Iron Oxides[M], 1996 Weinheim VCH

[3]

Sun H T, Cantalini C Porous Sillca-coated alpha-Fe2O3 Ceramics for Humidity Measurements at Elevated Temperature[J]. J. Am. Ceram. Soc., 1996, 79(4): 927-937.

[4]

Ozaki M, Kratohvil S Formation of Monodispersed Spindle-type Hematite Particles[J]. J. Colloid Interface Sci., 1984, 102(1): 146-151.

[5]

Baratto C, Lottici P Sol-Gel Preparation of α-Fe2O3 Thin Films: Structural Characterization by XAFS and Raman[J]. Journal of Sol-Gel Science and Technology, 1998, 13: 667-671.

[6]

Mallouki M, Tran-Van F Polypyrrole-Fe2O3 Nanohybrid Materials for Electrochemical Storage[J]. J Solid State Electrochem., 2007, 11(3): 398-406.

[7]

Jia C J, Sun L D Single-Crystalline Iron Oxide Nanotubes[J]. Chem. Int., 2005, 117(28): 4 402-4 407.

[8]

Ohmori M, Matijevic E Preparation and Properties of Uniform Coated Inorganic Colloidal Particles: Silica on Iron[J]. J.Colloid Interface Sci., 1993, 160(2): 288-292.

[9]

Mai L Q, Xu X Rational Synthesis of Silver Vanadium Oxides/ Polyaniline Triaxial Nanowires with Enhanced Electrochemical Property[J]. Nano. Lett., 2011, 11: 4 992-4 996.

[10]

Ren X Z, Li X Preparation and Electrochemical Properties of LiFePO4/PPy Composite Cathode Materials for Lithium-Ion Batteries[J]. Advanced Materials Research, 2010, 92(155): 155-162.

[11]

Li S, Han C H Rational Synthesis of Coaxial MoO3/PTh Nanowires with Improved Electrochemical Cyclability[J]. Int. J. Electrochem. Sci., 2011, 6: 4 504-4 513.

[12]

Cen L, Neoh K G Assessment of in Vitro Bioactivity of Hyaluronic Acid and Sulfated Hyaluronic Acid Functionalized Electroactive Polymer[J]. Biomacromolecules, 2004, 5(6): 2 238-2 246.

[13]

Stochmal E, Hasik M Preparation and Characterization of Polypyrrole with Dispersed Metallic Rhodium Particles[J]. Polymers for Advanced Technologies, 2011, 22(6): 1 067-1 077.

[14]

Caruso F Nanoengineering of Particle Surfaces[J]. Adv. Mater., 2011, 13(1): 11-22.

[15]

Gill I, Ballesteros A Encapsulation of Biologicals within Silicate, Siloxane and Hybrid Sol-gel Polymers: an Efficient and Generic Approach[J]. J. Am. Chem. Soc., 1998, 120(34): 8 587-8 598.

[16]

Zhu L Y H L Fabrication of Silica Core-conductive Polymer Polypyrrole Shell Composite Particles and Polypyrrole Capsule on Mono Dispersed Silica Templates[J]. Synth. Met., 2003, 139(2): 391-396.

[17]

David M R, Judith O S Spontaneous Self-assembly of Cu2O@PPy Nanowires and Anisotropic Crystals[J]. Chem. Commun., 2009, 39: 5 913-5 915.

[18]

Miomandre F, Chandezon F Polypyrrole-silica Core-shell Nanocomposites: a New Route Towards Active Materials in Dielectrophoretic Displays[J]. Journal of Nanoparticle Research, 2010, 13(2): 879-886.

[19]

Xuan S H, Fang Q L Fabrication of Spindle Fe2O3@Polypyrrole Core/shell Particles by Surface-modified Hematite Templating and Conversion to Spindle Polypyrrole Capsules and Carbon Capsules[J]. Journal of Colloid and Interface Science, 2007, 314(2): 502-509.

[20]

Kim S W, Kim M Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[J]. J. Am. Chem.Soc., 2002, 124(26): 7 642-7 643.

[21]

Kazimierska E, Muchindu M The Fabrication of Structurally Multiordered Polyaniline Films and Their Application in Electrochemical Sensing and Biosensing[J]. Electroanalysis, 2009, 21(3-5): 595-603.

[22]

Liu Z, Tabakman K Carbon Nanotubes in Biology and Medicine: In Vitro and in Vivo Detection, Imaging and Drug Delivery[J]. Nano. Research, 2009, 2(2): 85-120.

[23]

Yang X, Dai T Electrochemical Synthesis of Functional Polypyrrole Nanotubes via a Self-assembly Process[J]. Polymer, 2007, 48(14): 4 021-4 027.

[24]

Chiou N R, Lee L J Self-Assembled Polyaniline Nanofibers/ Nanotubes[J]. Chem. Mater., 2007, 19(15): 3 589-3 591.

[25]

Mi H Y, Zhang X G Preparation and Enhanced Capacitance of Core-shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors[J]. J. Power Sources, 2008, 176(1): 403-409.

[26]

Rojas D M, Sole J O Shaping Hybrid Nanostructures with Polymer Matrices: the Formation Mechanism of Silver-Polypyrrole Core/shell Nanostructures[J]. J. Mat. Chem., 2011, 21(7): 2 078-2 086.

[27]

Kim K J, Moon D W Formation of a Highly Oriented FeO Thin Film by Phase Transition of Fe3O4 and Fe Nanocrystallines[J]. Thin Solid Films, 2000, 360(1–2): 118-121.

[28]

Corneille J S, He J W Preparation and Characterization of Ultra-thin Iron Oxide Films on a Mo(100) Surface[J]. Surf. Sci., 1995, 338(1–3): 211-224.

[29]

Niedrig T S, Weiss W Electronic Structure of Ultrathin Ordered Iron Oxide Films Grown onto Pt(111)[J]. Phys. Rev. B, 1995, 52(24): 17 449-17 460.

[30]

Chastain J Handbook of X-ray Photoelectron Spectroscopy[M], 1992 MN Perkin Elmer

[31]

Gao Y, Kim Y J Synthesis of Epitaxial Films of Fe3O4 and α-Fe2O3 with Various Low-index Orientations by Oxygen-Plasma-Assisted Molecular Beam Epitaxy[J]. J. Vac. E. Sci. Technol. A, 1997, 15(2): 332-339.

[32]

Brundle C R, Chuang T J Core and Valence Level Photoemission Studies of Iron Oxide Surfaces and the Oxidation of Iron[J]. Surf. Sci., 1997, 68: 459-468.

[33]

Neetha A K, Matranga C Nucleation and Growth of Fe and FeO Nanoparticles and Films on Au(111)[J]. Surface Science, 2008, 602(4): 932-942.

[34]

Natile M M, Glisenti A New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts: Synthesis and Characterization[J]. Chem. Mater., 2003, 15(13): 2 502-2 510.

[35]

Murat A, Zeki K, Smsettin O EPR and FT-IR Sectroscopic Sudies of L-lysine Mnohydrochloride and Lglutamic Acid Hydrochloride Powders[J]. Journal of Molecular Structure, 2011, 994(1-3): 150-154.

[36]

Kim H S, Park D H Doped and De-doped Polypyrrole Nanowires by Using a BMIMPF6 Ionic Liquid[J]. Joo. Synth. Met., 2007, 57(22-23): 910-913.

[37]

Xu P, Han X Synthesisof Electromagnetic Functionalized Barium Ferrite Nanoparticles Embedded in Polypyrrole[J]. J. Phys. Chem. B, 2008, 112(10): 2 775-2 781.

[38]

Ai Z H, Yang P Degradation of 4-chlorophenol by Microwave Irradiation Enhanced Advanced Oxidation Processes[J]. Chemosphere, 2005, 60(6): 824-827.

[39]

Ai Z H, Lu L R Fe@Fe2O3 Core Shell Nanowires as Iron Reagent. 1. Efficient Degradation of Rhodamine B by a Novel Sono-Fenton Process[J]. J. Phys. Chem. C, 2007, 111(11): 4 087-4 093.

[40]

Chen C X L. Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism[J]. J. Phys. Chem. B, 2002, 106(2): 318-324.

[41]

Watanabe T, Takizawa T Photocatalysis Through Excitation of Adsorbates (1): Highly efficient N-deethylation of Rhodamine B Adsorbed to CdS[J]. J. Phys. Chem., 1977, 81(19): 1 845-1 851.

[42]

Wu J M, Zhang T W Large-scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity[J]. Langmuir, 2005, 21(15): 6 995-7 002.

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/