Proposal and achievement of a relatively Al-rich interlayer for In-rich Al xIn1−xN films deposition

Mo Lü , Chengjun Dong , Yiding Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 868 -875.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (5) : 868 -875. DOI: 10.1007/s11595-013-0784-4
Advanced Material

Proposal and achievement of a relatively Al-rich interlayer for In-rich Al xIn1−xN films deposition

Author information +
History +
PDF

Abstract

Ternary In-rich Al xIn1−xN films were successfully grown on Si (111) and (0001) sapphire substrates by radio-frequency magnetron sputtering on a relatively Al-rich Al xIn1−xN layer after AlN buffer. X-ray diffraction (XRD) patterns of the films indicate highly c axis-oriented wurtzite structure and the indium content of about 0.76 has been evaluated according to the Vegard’s law. An Al-rich Al xIn1−xN transition layer was formed between the ultimate In-rich Al xIn1−xN film and the AlN buffer, which served as a further buffer to alleviate mismatch. X-ray photoelectron spectroscopy (XPS) depth profiling analyses confirm the alternative of indium and aluminum composition and the unavoidable oxygen impurities from surface to bulk. Owing to high indium content, obvious E 2 H and InN-like A 1 (LO) phonon model accompanying with slight AlN-like A 1 (LO) phonon model are observed. Hall effect measurements demonstrate n-type electrical conductivity in these alloys with carrier concentrations n=1019 cm−3. The strain in In-rich Al xIn1−xN films can be significantly reduced by introducing an Al-rich interlayer, facilitating the improvement of film quality for diverse device applications.

Keywords

Al xIn1−xN film / magnetron sputtering / buffer layer / microstructure

Cite this article

Download citation ▾
Mo Lü, Chengjun Dong, Yiding Wang. Proposal and achievement of a relatively Al-rich interlayer for In-rich Al xIn1−xN films deposition. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(5): 868-875 DOI:10.1007/s11595-013-0784-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Z T, Sakai Y, Zhang J C, . Effect of Strain on Quantum Efficiency of InAlN-based Solar-blind Photodiodes [J]. Appl. Phys. Lett., 2009, 95(8): 083 504

[2]

Guo Q X, Ding J, Tanaka T, . X-ray Absorption Near-edge Fine Structure Study of AlInN Semiconductors[J]. Appl. Phys. Lett., 2005, 86(11): 111 911

[3]

Gonschorek M, Carlin J F, Feltin E, . High Electron Mobility Lattice-matched AlInN/GaN Field-effect Transistor Heterostructures[J]. Appl. Phys. Lett., 2006, 89(6): 062 106

[4]

Ferhat M, Bechstedt F First-principles Calculations of Gap Bowing in InxGa1−xN and InxAl1−xN Alloys: Relation to Structural and Thermodynamic Properties[J]. Phys. Rev. B, 2002, 65(7): 075 213

[5]

Hums C, Bläsing J, Dadgar A, . Metal-organic Vapor Phase Epitaxy and Properties of AlInN in the Whole Compositional Range[J]. Appl. Phys. Lett., 2007, 90(2): 022 105

[6]

Castiglia A, Feltin E, Cosendey G, . Al0.83In0.17N Latticematched to GaN Used as an Optical Blocking Layer in GaN-based Edge Emitting Lasers[J]. Appl. Phys. Lett., 2009, 94(19): 193 506

[7]

Kang T T, Hashimoto A, Yamamoto A Effect of Gas Flow on the Growth of In-rich AlInN Films by Metal-organic Chemical Vapor Deposition[J]. J. Apple. Phys., 2009, 106(5): 053 525

[8]

Darakchieva V, Beckers M, Xie M Y, . Effects of Strain and Composition on the Lattice Parameters and Applicability of Vegard’s Rule in Al-rich Al1−xInxN Films Grown on Sapphire[J]. J. Appl. Phys., 2008, 103(10): 103 513

[9]

Hemmingsson C, Boota M, Rahmatalla R O, . Growth and Characterization of Thick GaN Layers Grown by Halide Vapour Phase Epitaxy on Lattice-matched AlInN Templates[J]. J. Crystal. Growth, 2009, 311(2): 292-297.

[10]

Kang T T, Hashimoto A, Yamamoto A Raman Scattering of Indiumrich AlxIn1−xN: Unexpected Two-mode Behavior of A1(LO)[J]. Phys. Rev. B, 2009, 79(3): 033 301

[11]

Terashima W, Che S B, Ishitani Y, . Growth and Characterization of AlInN Ternary Alloys in Whole Composition Range and Fabrication of InN/AlInN Multiple Quantum Wells by RF Molecular Beam Epitaxy[J]. Jpn. J. Appl. Phys., 2006, 45(21–23): 539-542.

[12]

Guo Q X, Tanaka T, Nishio M, . Optical Bandgap Energy of Wurtzite In-Rich AlInN Alloys[J]. Jpn. J. Appl. Phys., 2003, 42(2B): 141-143.

[13]

Jiang L F, Shen W Z, Guo Q X Temperature Dependence of the Optical Properties of AlInN[J]. J. Appl. Phys., 2009, 106(1): 013 515

[14]

Dong C J, Xu M, Chen Q Y, . Growth of Well-oriented AlxIn1−xN Films by Sputtering at low Temperature[J]. J. Alloys Compd., 2009, 479(1-2): 812-815.

[15]

Dadgar A, Schulze F, Bläsing J, . High-sheet-charge-carrier-density AlInN/GaN Field-effect Transistors on Si(111)[J]. Appl. Phys. Lett., 2004, 85(22): 5 400-5 402.

[16]

Moulder J F, Stickle W F, Sobol P E Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data[M], 1992 Eden Prairie Perkin-Elmer, Physical Electronics Division

[17]

Peng T, Piprek J, Qiu G, . Band Gap Bowing and Refractive Index Spectra of Polycrystalline AlxIn1−xN Films Deposited by Sputterin[J]. Appl. Phys. Lett., 1997, 71(17): 2 439-2 441.

[18]

Ahn H, Shen C H, Wu C L, . Spectroscopic Ellipsometry Study of Wurtzite InN Epitaxial Films on Si(111) with Varied Carrier Concentrations[J]. Appl. Phys. Lett., 2005, 86(20): 201 905

[19]

Shubina T V, Ivanov S V, Jmerik V N, . Mie Resonances, Infrared Emission, and the Band Gap of InN[J]. Phys. Rev. Lett., 2004, 92(11): 117 407

[20]

Nagatomo T, Kuboyama T, Minamino H, . Properties of Ga1−xInxN Films Prepared by MOVPE[J]. Jpn. J. Appl. Phys., 1989, 28: 1 334-1 336.

[21]

Wright A F, Nelson J S First-principles Calculations for Zinc-blende AlInN Alloys[J]. Appl. Phys. Lett., 1995, 66(25): 3 465-3 467.

[22]

Lorenz K, Franco N, Alves E, . Anomalous Ion Channeling in AlInN/GaN Bilayers: Determination of the Strain State[J]. Phys. Rev. Lett., 2006, 97(8): 085 501

[23]

Iliopoulos E, Adikimenakis A, Giesen C, . Energy Bandgap Bowing of InAlN Alloys Studied by Spectroscopic Ellipsometry[J]. Appl. Phys. Lett., 2008, 92(19): 191 907

[24]

Seppänen T, Persson P O Å, Hultman L, . Magnetron Sputter Epitaxy of Wurtzite Al1−xIn xN(0.1<x<0.9) by Dual Reactive DC Magnetron Sputter Deposition[J]. J. Appl. Phys., 2005, 97(8): 083 503

[25]

Walukiewicz W, Li S X, Wu J, . Optical Properties and Electronic Structure of InN and In-rich Group III-nitride Alloys[J]. J. Crystal Growth, 2004, 269(1): 119-127.

[26]

Yeh T S, Wu J M, Lan W H Electrical Properties and Optical Bandgaps of AlInN Films by Reactive Sputtering[J]. J. Cryst. Growth, 2008, 310(24): 5 308-5 311.

[27]

Paszkowicz W, Cerny R, Krukowski S Rietveld Refinement for Indium Nitride in the 105–295 K Range[J]. Powder Diffr., 2003, 18(2): 114-121.

[28]

Wright A Elastic Properties of Zinc-blende and Wurtzite AlN, GaN, and InN[J]. J. Appl. Phys., 1997, 82(6): 2 833-2 839.

[29]

Cullity B D Elements of X-ray Diffraction[M], 1978 2nd ed. London Addison Wisely

[30]

Song H P, Yang A L, Wei H Y, . Determination of Wurtzite InN/cubic In2O3 Heterojunction Band Offset by X-ray Photoelectron Spectroscopy[J]. Appl. Phys. Lett., 2009, 94(22): 222 114

[31]

Yang A L, Song H P, Wei H Y, . Measurement of Polar c-plane and Nonpolar A-plane InN/ZnO Heterojunctions Band Offsets by X-ray Photoelectron Spectroscopy[J]. Appl. Phys. Lett., 2009, 94(16): 163 301

[32]

Manova D, Dimitrova V, Fukarek W, . Investigation of DCreactive Magnetron-sputtered AlN Thin Films by Electron Microprobe Analysis, X-ray Photoelectron Spectroscopy and Polarised Infra-red Reflection[J]. Surface and Coatings Technology, 1998, 106(2–3): 205-208.

[33]

Soares G V, Bastos K P, Pezzi R P, . Nitrogen Bonding, Stability, and Transport in AlON Films on Si[J]. Appl. Phys. Lett., 2004, 84(24): 4 992-4 994.

[34]

Ozensoy E, Peden C H F, Szanyi J NO2 Adsorption on Ultrathin θ-Al2O3 Films: Formation of Nitrite and Nitrate Species[J]. J. Phys. Chem. B, 2005, 109(33): 15 977-15 984.

[35]

Rosenerger L, Baird R, Cullen E M C, . XPS Analysis of Aluminum Nitride Films Deposited by Plasma Source Molecular Beam Epitaxy[J]. Sur. Interface Anal., 2008, 40(9): 1 254-1 261.

[36]

Kuball M, Pomeroy J W, Wintrebert-Fouquet M, . A Raman Spectroscopy Study of InN[J]. J. Crystal. Growth, 2004, 269(1): 59-65.

[37]

Emura S, Nakagawa T, Shun-ichi G, . Raman Spectra of AlxIn1−x As Grown by Molecular-beam Epitaxy[J]. J. Appl. Phys., 1987, 62(11): 4 632-4 634.

[38]

Grille H, Schnittler C, Bechstedt F Phonons in Ternary Group-III Nitride Alloys[J]. Phys. Rev. B, 2000, 61: 6 091-6 094.

[39]

Yamaguchi S, Kariya M, Nitta S, . Anomalous Features in the Optical Properties of Al1−xInxN on GaN Grown by Metal Organic Vapor Phase Epitaxy[J]. Appl. Phys. Lett., 2000, 76(7): 876-878.

[40]

Lukitsch M J, Danylyuk Y V, Naik V M, . Optical and Electrical Properties of Al1−xInxN Films Grown by Plasma Source Molecularbeam Epitaxy[J]. Appl. Phys. Lett., 2001, 79(5): 632-634.

[41]

Lu H, Schaff W J, Hwang J, . Effect of an AlN Buffer Layer on the Epitaxial Growth of InN by Molecular-beam Epitaxy[J]. Appl. Phys. Lett., 2001, 79(10): 1 489-1 491.

[42]

Ive T, Brandt O, Kostial H, . Controlled n-type Doping of AlN:Si Films Grown on 6H-SiC(0001) by Plasma-assisted Molecular Beam Epitaxy[J]. Appl. Phys. Lett., 2005, 86(2): 024 106

[43]

Butte R, Carlin J F, Feltin E, . Current Status of AlInN Layers Lattice-matched to GaN for Photonics and Electronics[J]. J. Phys. D: Appl. Phys., 2007, 40: 6 328-6 344.

[44]

Khan N, Sedhain A, Li J, . High Mobility InN Epilayers Grown on AlN Epilayer Templates[J]. Appl. Phys. Lett., 2008, 92(17): 172 101

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/