Nanoindentation behavior of molybdenum surface-modified titanium

Yong Ma , Guozheng Yuan , Zhigang Li , Xiangyu Zhang , Bin Tang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (4) : 825 -828.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (4) : 825 -828. DOI: 10.1007/s11595-013-0776-4
Metallic Materials

Nanoindentation behavior of molybdenum surface-modified titanium

Author information +
History +
PDF

Abstract

By using double glow plasma surface metallurgy technique, the molybdenum (Mo) surface-modified layer on titanium (Ti) was obtained. The corresponding cross-section morphology, phase formation, and element concentration were investigated by optical microscopy, X-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), respectively. The experimental results indicate that the Mo modified layer is composed of a 1.7 μm pure Mo deposition layer and a 14.3 μm Mo diffusion layer. Along the sample thickness direction, nanoindentation tests were performed on the cross-section of the Mo diffusion layer and the Ti substrate (for the comparison purpose) by Hysitron TI900 TriboIndenter. The 2D and 3D residual indentation profiles of the Mo diffusion layer were obtained by scanning probe microscopy (SPM). The elastic modulus and hardness values of every indent were acquired and analyzed. According to the load-displacement curves, the plastic deformation degrees of the Mo diffusion layer and the Ti substrate were analyzed. It is indicated that the Mo diffusion layer possesses high strength-toughness.

Keywords

Mo surface-modified Ti / nanonindentation / high strength-toughness

Cite this article

Download citation ▾
Yong Ma, Guozheng Yuan, Zhigang Li, Xiangyu Zhang, Bin Tang. Nanoindentation behavior of molybdenum surface-modified titanium. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(4): 825-828 DOI:10.1007/s11595-013-0776-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai Z, Shafer T Electrochemical Characterization of Cast Titanium Alloys[J]. Biomaterials, 2003, 24(2): 213-218.

[2]

Ji HB, Xia LF, Ma XX, . Tribological Behavior of Different Films on Ti-6Al-4V Alloy Prepared by Plasmabased Ion Implantation[J]. Trans. Nonferrous Met. Soc. China, 2000, 10(4): 493-497.

[3]

De Giglio E, Guascito MR, Sabbatini L, . Electropolymerization of Pyrrole on Titanium Substrates for the Future Development of New Biocompatible Surfaces[J]. Biomaterials, 2001, 22(19): 2 609-2 616.

[4]

Park JY, Gemmell CH, Davies JE Platelet Interactions with Titanium: Modulation of Platelet Activity by Surface Topography[J]. Biomaterials, 2001, 22(19): 2 671-2 682.

[5]

Fu YQ, Du HJ, Hunag WM, . TiNi-based Thin Films in MEMS Applications[J]. Mater. Sci. Eng. A, 2001, 298(2): 16-25.

[6]

Zhang X, Xie XS, Yang ZM, . A Study of Nickel-based Corrosion Resisting Alloy Layer Obtained by Double Glow Plasma Surface Alloying Technique[J]. Surf. Coat. Technol., 2000, 131(1): 378-382.

[7]

Jiang X, Jiahe A, Xie XS, . Multi-element Ni-Cr-Mo-Cu Surface Alloyed Layer on Steel Using a Double Glow Plasma Process[J]. Surf. Coat. Technol., 2003, 168(2): 142-147.

[8]

Jiang X, Zhang X, Xie XS, . Ni-based Superalloy Surface Alloying by Double-glow Plasma Surface Alloying Technique[J]. Vacuum, 2004, 72(4): 489-500.

[9]

Jiang X, Xie XS, Xu Z, . Investigation on Multi-element Ni-Cr-Mo-Cu Alloying Layer by Double Glow Plasma Alloying Technique[J]. Mater. Chem. Phys., 2005, 92(2–3): 340-343.

[10]

Liu XP, Xu Z, Xu W, . Plasma Surface Alloying with Molybdenum and Carburization of TiAl Based Alloys[J]. Trans. Nonferrous Met. Soc. China, 2005, 15: 420-424.

[11]

Liang WP, Xu Z, Miao Q, . Double Glow Plasma Surface Molybdenizing of Ti2AlNb[J]. Surf. Coat. Technol., 2007, 201(9): 5 068-5 071.

[12]

Tang B, Wu PQ, Li XY, . Tribological Behavior of Plasma Mo-N Surface Modified Ti-6Al-4V Alloy[J]. Surf. Coat. Technol., 2004, 179(2): 333-339.

[13]

Qin L, Qu JZ, Lin NM, . Plasma Boronizing of Ti6Al4V Using Solid Precursors by Double Glow Plasma Alloying Technique[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 2 082-2 085.

[14]

He ZY, Wang ZX, Wang WB, . Surface Modification of Titanium Alloy Ti6Al4V by Plasma Niobium Alloying Process[J]. Surf. Coat. Technol., 2007, 201(9): 5 705-5 709.

[15]

Li ZX, Du JH, Gao GR, . Performances of Ti-Pd Coating on Titanium Surface Prepared by Double Glow Plasma Technology[J]. Rare Metal Mat. Eng., 2006, 35(8): 1 239-1 242.

[16]

Li ZX, Hu T, Liu DX, . Corrosion Resistance of Ti-Pd Coating Prepared on Titanium Substrate by Glow Plasma Surface Metallurgy Process[J]. Rare Metal Mat. Eng., 2008, 37: 568-571.

[17]

Fan AL, Tian LH, Qin L, . Bacteria Adherence Property of Molybdenum Nitride Modified Layer on Ti6Al4V Alloy[J]. Trans. Nonferrous Met. Soc. China, 2007, 17(s1b): 889-891.

[18]

Fan AL, Qin L, Tian LH, . Corrosion Resistance of Molybdenum Nitride Modified Ti6Al4V Alloy in HCl Solution[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(3): 358-361.

[19]

Fan AL, Qin L, Tian LH, . Study on Bacteria Adherence Properties of Mo Surface-modified Layer in Ti6Al4V Alloy Prepared by Plasma Surface Alloying Technique[J]. Appl. Surf. Sci., 2008, 255(2): 419-421.

[20]

Qin L, Tian LH, Fan AL, . Fatigue Behavior of Surface-modified Ti-6Al-4V Alloy by Double Glow Discharge Plasma Alloying[J]. Surf. Coat. Technol., 2007, 201(9): 5 282-5 285.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/