Structure and mechanical properties of waterborne polyurethane-based composites filled with self-assembled supramolecular nanoplatelets

Fang Zhang , Honglei Fan , Jin Huang , Zhongmin Su , Lihong He

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (4) : 773 -780.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (4) : 773 -780. DOI: 10.1007/s11595-013-0767-5
Organic Materials

Structure and mechanical properties of waterborne polyurethane-based composites filled with self-assembled supramolecular nanoplatelets

Author information +
History +
PDF

Abstract

New composites of waterborne polyurethane (WPU) as a matrix were prepared by incorporating rigid supramolecular nanoplatelets (SNs) as filler, which were self-assembled by the selective inclusion of β-cyclodextrin (β-CD) onto poly(propylene oxide) (PPO) segment in the poly(ethylene oxide)-block-PPO-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO). It is worth noting that, when the loading level of SN is lower than 3wt%, the SNs with moderate PEO length result in the simultaneous increase in strength, elongation and Young’s modulus in contrast with neat WPU. If there is no stretching free PEO chain, both strength and elongation decrease in spite of an increase in Young’s modulus. However, too long PEO chains result in the decrease of mechanical performances while the relatively higher loading-level of SNs also inhibits the enhancement of strength and elongation.

Keywords

waterborne polyurethane / supramolecular nanoplatelets / polyrotaxane / cyclodextrin inclusion / composites / mechanical properties

Cite this article

Download citation ▾
Fang Zhang, Honglei Fan, Jin Huang, Zhongmin Su, Lihong He. Structure and mechanical properties of waterborne polyurethane-based composites filled with self-assembled supramolecular nanoplatelets. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(4): 773-780 DOI:10.1007/s11595-013-0767-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wenz G, Han BH, Muller A Cyclodextrin Rotaxanes and Polyrotaxanes[J]. Chem. Rev., 2006, 106(3): 782-817.

[2]

Huang FH, Gibson HW Polypseudorotaxanes and Polyrotaxanes[J]. Prog. Polym. Sci., 2005, 30(10): 982-1018.

[3]

Harada A Design and Construction of Supramolecular Architectures Consisting of Cyclodextrins and Polymers[J]. Adv. Polym. Sci., 1997, 133: 141-191.

[4]

Tonelli AE Nanostructuring and Functionalizing Polymers with Cyclodextrins[J]. Polymer, 2008, 49(7): 1 725-1 736.

[5]

Koichi M, Kohzo I Structure and Dynamics of Polyrotaxane and Slide-Ring Materials[J]. Polymer, 2010, 51(4): 959-967.

[6]

Vedula J, Tonelli AE Reorganization of Poly(ethylene terephthalate) Structures and Conformations to Alter Properties[J]. J. Polym. Sci. Part B Polym. Phys., 2007, 45(7): 735-746.

[7]

Rusa CC, Rusa M, Gomez M, Shin ID, Fox JD, Tonelli AE Nanostructuring High Molecular Weight Isotactic Polyolefins via Processing with γ-Cyclodextrin Inclusion Compounds. Formation and Characterization of Polyolefin-γ-Cyclodextrin Inclusion Compounds[J]. Macromolecules, 2004, 37(21): 7 992-7 999.

[8]

Rusa CC, Tonelli AE Polymer/Polymer Inclusion Compounds as a Novel Approach To Obtaining a PLLA/PCL Intimately Compatible Blend[J]. Macromolecules, 2000, 33(15): 5 321-5 324.

[9]

Uyar T, Evren A, Tonelli AE Pyrolysis Mass Spectrometry Analysis of Poly(vinyl acetate), Poly(methyl methacrylate) and Their Blend Coalesced from Inclusion Compounds Formed with γ-Cyclodextrin[J]. Polym. Degrad. Stab., 2006, 91(1): 1-11.

[10]

Wei M, Shin ID, Urban B, Tonelli AE Partial Miscibility in A Nylon-6/Nylon-66 Blend Coalesced from Their Common -Cyclodextrin Inclusion Complex[J]. J. Polym. Sci. Part B Polym. Phys., 2004, 42(8): 1 369-1 378.

[11]

Uyar T, Oguz G, Tonelli AE Thermal Degradation Processes of Poly(carbonate) and Poly(methyl methacrylate) in Blends Coalesced Either fromTheir Common Inclusion Compound Formed with γ-Cyclodextrin or Precipitated from Their Common Solution[J]. Polym. Degrad. Stab., 2006, 91(10): 2 471-2 481.

[12]

Shuai XT, Porbeni FE, Wei M, Tonelli AE Formation of and Coalescence from the Inclusion Complex of a Biodegradable Block Copolymer and α-Cyclodextrin: A Novel Means to Modify the Phase Structure of Biodegradable Block Copolymers[J]. Macromolecules, 2001, 34(21): 7 355-7 361.

[13]

Shuai XT, Wei M, Porbeni FE, Tonelli AE Formation of and Coalescence from The Inclusion Complex of A Biodegradable Block Copolymer and α-Cyclodextrin. 2: A Novel Way To Regulate the Biodegradation Behavior of Biodegradable Block Copolymers[J]. Biomacromolecules, 2002, 3(1): 201-207.

[14]

Wei M, Shuai XT, Tonelli AE Melting and Crystallization Behaviors of Biodegradable Polymers Enzymatically Coalesced from Their Cyclodextrin Inclusion Complexes[J]. Biomacromolecules, 2003, 4(3): 783-792.

[15]

Wang XS, Kim HK, Fujita Y Relaxation and Reinforcing Effects of Polyrotaxane in An Epoxy Resin Matrix[J]. Macromolecules, 2006, 39(3): 1 046-1 052.

[16]

Araki J, Kataoka T, Katsuyama N A Preliminary Study for Fiber Spinning of Mixed Solutions of Polyrotaxane and Cellulose in A Dimethylacetamide/Lithium Chloride (DMAc/LiCl) Solvent System[J]. Polymer, 2006, 47(25): 8 241-8 246.

[17]

Tsai CC, Leng SW, Jeong KU, Van Horn RM, Wang CL, Zhang WB, Graham MJ, Huang J, Ho RM, Chen YM, Lotz B, Stephen Cheng ZD Supramolecular Structure of β-Cyclodextrin and Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Inclusion Complexes[J]. Macromolecules, 2010, 43(22): 9 454-9 461.

[18]

Tsai CC, Zhang WB, Wang CL, Van Horn RM, Graham MJ, Huang J, Chen YM, Guo MM, Stephen Cheng ZD Evidence of Formation of Site-Selective Inclusion Complexation between β-Cyclodextrin and Poly(ethylene oxide)-block-poly(propylene oxide)-blockpoly( ethylene oxide) Copolymers[J]. J. Chem. Phys., 2010, 132(20): 204 903

[19]

Huang J, Zhou Z, Wei M, Chang PR Soy Protein-Based Nanocomposites Reinforced by Supramolecular Nanoplatelets Assembled from Pluronic Polymers/β-Cyclodextrin Pseudopolyrotaxanes[J]. J. Appl. Polym. Sci., 2008, 107(1): 409-417.

[20]

Wicks ZW, Wicks DA, Rosthauser JW Two Package Waterborne Urethane Systems[J]. Prog. Org. Coat., 2002, 44(2): 161-183.

[21]

Noble KL Waterborne Polyurethanes[J]. Prog. Org. Coat., 1997, 32: 131-136.

[22]

Yen MS, Tsai PY Effects on The Structure and Properties of Membranes Formed by Blending Polydimethylsiloxane Polyurethane into Different Soft-Segment Waterborne Polyurethanes[J]. J. Appl. Polym. Sci., 2006, 102(1): 210-221.

[23]

Kim BK, Seo JW, Jeong HM Morphology and Properties of Waterborne Polyurethane/Clay Nanocomposites[J]. Eur. Polym. J., 2003, 39(1): 85-91.

[24]

Lee HT, Hwang JJ, Liu HJ Effects of Ionic Interactions between Clay and Waterborne Polyurethanes on The Structure and Physical Properties of Their Nanocomposite Dispersions[J]. J. Polym. Sci. Part A Polym. Chem., 2006, 44(19): 5 801-5 807.

[25]

Kuan HC, Ma CC, Chuang WP, Su HY Hydrogen Bonding, Mechanical Properties, and Surface Morphology of Clay/Waterborne Polyurethane Nanocomposites[J]. J. Polym. Sci. Part B Polym. Phys., 2005, 43(1): 1-12.

[26]

Lee HT, Lin LH Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of The Clay and Its Interlayer Ions on The Morphology and Physical and Electrical Properties[J]. Macromolecules, 2006, 39(18): 6 133-6 141.

[27]

Kuan HC, Ma CC, Chuang WP Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite[J]. Compos. Sci. Technol., 2005, 65(11–12): 1 703-1 710.

[28]

Zhao CX, Zhang WD, Sun DC Preparation and Mechanical Properties of Waterborne Polyurethane/Carbon Nanotube Composites[J]. Polym. Compos., 2009, 30(5): 649-654.

[29]

Kwon JY, Kim HD Preparation and Properties of Acid-Treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites[J]. J. Appl. Polym. Sci., 2005, 96(2): 595-604.

[30]

Kwon J, Kim H Comparison of The Properties of Waterborne Polyurethane/Multiwalled Carbon Nanotube and Acid-Treated Multiwalled Carbon Nanotube Composites Prepared by in Situ Polymerization[J]. J. Polym. Sci. Part A Polym. Chem., 2005, 43(17): 3 973-3 985.

[31]

Cao XD, Dong H, Li CM New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane[J]. Biomacromolecules, 2007, 8(3): 899-904.

[32]

Chen GJ, Wei M, Chen JH, Huang J Simultaneous Reinforcing and Toughening: New Nanocomposites of Waterborne Polyurethane Filled with Low Loading Level of Starch Nanocrystals[J]. Polymer, 2008, 49(7): 1 860-1 870.

[33]

Chang PR, Ai FJ, Huang J Effects of Starch Nanocrystal-graft-Polycaprolactone on Mechanical Properties of Waterborne Polyurethane-Based Nanocomposites[J]. J. Appl. Polym. Sci., 2009, 111(2): 619-627.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/