Enhancement in the response of Pb(Zr,Ti)O3/Terfenol-D/Metglas magnetoelectric laminate composites

Yang Li , Jun Ouyang , Bei Tong , Shi Chen , Xiaofei Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (4) : 664 -667.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (4) : 664 -667. DOI: 10.1007/s11595-013-0748-8
Advanced Materials

Enhancement in the response of Pb(Zr,Ti)O3/Terfenol-D/Metglas magnetoelectric laminate composites

Author information +
History +
PDF

Abstract

The magnetic field response results on a five-layer structure given as Metglas /Terfenol-D/Pb(Zr,Ti)O3/Terfenol-D/Metglas were reported. Due to its high permeability, Metglas can be incorporated as the third phase into conventional Pb(Zr,Ti)O3/Terfenol-D laminates, which results in a stronger magnetoelectric(ME) response. The increase in Metglas thickness significantly influences the ME response as well. The ME voltage coefficient for a structure with a 150 μm thick Metglas layer on both sides of Terfenol-D/Pb(Zr,Ti)O3 laminates at 1 kHz was found to be 1.2 V/cmOe at dc magnetic bias field of 590 Oe under an ac magnetic drive of 1 Oe, which was notably higher in comparison to similar structures with other different Metglas thickness.

Keywords

laminates composites / magnetoelectric response / magnetic field / Metglas thickness

Cite this article

Download citation ▾
Yang Li, Jun Ouyang, Bei Tong, Shi Chen, Xiaofei Yang. Enhancement in the response of Pb(Zr,Ti)O3/Terfenol-D/Metglas magnetoelectric laminate composites. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(4): 664-667 DOI:10.1007/s11595-013-0748-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Landau LD, Lifshitz E Electrodynamics of Continuous Media[M], 1960 Oxford Pergamon 119

[2]

Van Suchtelen J Product Properties: A New Application of Composite Materials[J]. Philips Res. Rep., 1972 27-28.

[3]

Boomgaard J, Van Den Terrell DR, Born RAJ, . An in Situ Grown Eutectic Magnetoelectric Composite Material[J]. Mater. Sci., 1974, 9: 1 705-1 709.

[4]

Avellaneda M, Harshe G Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer(2-2) Composites[J]. J. Intell. Mater. Syst. Struct., 1994, 5: 501-502.

[5]

Srinivasan G, Rasmussen ET, Gallegos J, . Magnetoelectric Bilayer and Multilayer Structures of Magnetostrictive and Piezoelectric Oxides[J]. Phys. Rev. B, 2001, 64: 214408

[6]

Srinivasan G, Rasmussen ET, Levin BJ, . Magnetoelectric Effects in Bilayers and Multilayers of Magnetostrictive and Piezoelectric Perovskite Oxides[J]. Phys. Rev. B, 2002, 65: 134402

[7]

Dong S, Li JF, Viehland D Piezoelectric Ultrasonic Micromotor with 1.5 mm Diameter[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50: 1236

[8]

Dong S, Bai F, Li JF, . Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composites: Theory[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50: 1 253-1 261.

[9]

Dong S, Li JF, Viehland D Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composites: Experiments[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51: 794-799.

[10]

Dong S, Li JF, Viehland D Characterization of Magnetoelectric Laminate Composites Operated in Longitudinal-Transverse and Transverse-transverse Modes[J]. J. Appl. Phys., 2004, 95: 2 626-2 630.

[11]

Dong S, Li JF, Viehland D Vortex Magnetic Field Sensor Based on Ring-type Magnetoelectric Laminate[J]. Appl. Phys. Lett., 2004, 85: 2 307-2 309.

[12]

Zhai JY, Xing Z, Dong SX, Li JF, . Magnetoelectric Laminate Composites: An Overview[J]. J. Am. Ceram. Soc., 2008, 91: 351-358.

[13]

Dong SX, Zhai JY, Li JF, . Near-ideal Magnetoelectricity in Highpermeability Magnetostrictive/Piezofiber Laminates with a (2-1) Connectivity[J]. Appl. Phys. Lett., 2006, 89: 252904

[14]

Xing Z, Li JF, Viehland D Noise and Scale Effects on the Signal-to-noise Ratio in Magnetoelectric Laminate Sensor/Detection Units. Appl. Phys. Lett., 2007, 91: 182902

[15]

Fang Z, Lu SG, Li F, . Enhancing the Magnetoelectric Response of Metglas/Polyvinylidene Fluoride Laminates by Exploiting the Flux Concentration[J]. Effect Appl. Phys. Lett., 2009, 95: 112903

[16]

Dong SX, Li JF, Viehland D Ultra-high Magnetic Field Sensitivity in Laminates of TERFENOL-D and PMN-PT Crystals[J]. Appl. Phys. Lett., 2003, 83: 2 265-2 267.

[17]

Park C-S, Cho K-H, Arat M A, . High Magnetic Field Sensitivity in Pb(Zr,Ti)O3-Pb(Mg1/3Nb2/3)O3 Single Crystal/Terfenol-D/Metglas Magnetoelectric Laminate Composites[J]. J. Appl. Phys., 2010, 107: 094109

[18]

Ma J, Hu J, Li Z, . Recent Progress in Multiferroic Magnetoelectric Composites: From Bulk to Thin Films[J]. Adv. Mater., 2011, 23: 1 062-1 087.

[19]

Dong SX, Zhai JY, Bai F, . Push-pull Mode Magnetostrictive/Piezoelectric Laminate Composite with an Enhanced Magnetoelectric Voltage Coefficient[J]. Appl. Phys. Lett., 2005, 87: 062502

[20]

Hashin Z, Shtrikman S A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials[J]. J. Appl. Phys., 1962, 33: 3 125

[21]

Das J, Gao J, Xing Z, . Enhancement in the Gield Sensitivity of Magnetoelectric Laminate Heterostructures[J]. Appl. Phys. Lett., 2009, 95: 092501

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/