The behavior of new hydrophilic composite bone cements for immediate loading of dental implant

Yihui Ma , Ruoli Wang , Xiangrong Cheng , Zhilan Liu , Yufeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 627 -633.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 627 -633. DOI: 10.1007/s11595-013-0742-1
Article

The behavior of new hydrophilic composite bone cements for immediate loading of dental implant

Author information +
History +
PDF

Abstract

We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loading. FTIR-ATR, contact angle, and maximum breach torque were employed for measurement. The results reveal that the introduction of hydrophilic functional groups has increased PMMA’s surface hydrophilicity after contact angle test. FTIR-ATR results suggest the hydrophilic groups participate in the polymerization reactions, and maximum breach torque of the hydrophilic acrylic bone cements is near 110 Ncm torque. Those effects make it possible for conventional acrylic bone cement application in immediate loading of dental implant.

Keywords

immediate loading / hydrophilic acrylic bone cement / tooth implant

Cite this article

Download citation ▾
Yihui Ma, Ruoli Wang, Xiangrong Cheng, Zhilan Liu, Yufeng Zhang. The behavior of new hydrophilic composite bone cements for immediate loading of dental implant. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(3): 627-633 DOI:10.1007/s11595-013-0742-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Romanos G E, Testori T, Degidi M, . Histologic and Histomorphometric Findings from Retrieved, Immediately Occlusally Loaded Implants in Humans[J]. J.Periodontol, 2005, 76(11): 1 823-1 832.

[2]

Penarrocha M, Boronat A, Garcia B Immediate Loading of Immediate Mandibular Implants with a Full-arch Fixed Prosthesis: a Preliminary Study[J]. J.Oral.Maxillofac.Surg., 2009, 67(6): 1 286-1 293.

[3]

Araujo M G, Sukekava F, Wennstrom J L, . Ridge Alterations Following Implant Placement in Fresh Extraction Sockets: an Experimental Study in the Dog[J]. J.Clin Periodontol., 2005, 32(6): 645-652.

[4]

Raghoebar G M, Schoen P, Meijer H J, . Early Loading of Endosseous Implants in the Augmented Maxilla: a 1-year Prospective Study[J]. Clin.Oral.Implants.Res., 2003, 14(6): 697-702.

[5]

Degidi M, Piattelli A 7-year Follow-up of 93 Immediately Loaded Titanium Dental Implants[J]. J.Oral.Implantol., 2005, 31(1): 25-31.

[6]

Covani U, Crespi R, Cornelini R, . Immediate Implants Supporting Single Crown Restoration: a 4-year Prospective Study[J]. J.Periodontol., 2004, 75(7): 982-988.

[7]

Wbf S J A Retrospective Study of 1925 Consecutively Placed Immediate Implants From 1988 to 2004[J]. Int.J.Oral.Maxillofac. Implants, 2006 71-80.

[8]

St C Immediate or Early Placement of Implants Following Tooth Extraction: Review of Biologic Basis, Clinical Procedures, and Outcomes[J]. Int.J.Oral.Maxillofac.Implants, 2004, 19supp1: 12-25.

[9]

Ge R Surgical and Prosthetic Concepts for Predictable Immediate Loading of Oral Implants[J]. J.Calif Dent.Assoc., 2004, 32(12): 991-1 001.

[10]

Javed F, Romanos G E Impact of Diabetes Mellitus and Glycemic Control on the Osseointegration of Dental Implants: a Systematic Literature Review [J]. J.Periodontol., 2009, 80(11): 1 719-1 730.

[11]

Javed F, Almas K Osseointegration of Dental Implants in Patients Undergoing Bisphosphonate Treatment: a Literature Review[J]. J.Periodontol., 2010, 81(4): 479-84.

[12]

Charnley J Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur[J]. J.Bone Joint.Surg.Br., 1960, 42-B: 28-30.

[13]

Raab S, Ahmed A M, Provan J W Thin Film PMMA Precoating for Improved Implant Bone-cement Fixation[J]. J.Biomed.Mater.Res., 1982, 16(5): 679-704.

[14]

Nakabayashi N, Masuhara E Development of Adhesive Pit and Tissue Sealants Using a MMA Resin Initiated by a Tri-n-butyl Borane Derivative[J]. J. Biomed.Mater.Res., 1978, 12(2): 149-165.

[15]

Galibert P, Deramond H, Rosat P, . Preliminary Note on the Treatment of Vertebral Angioma by Percutaneous Acrylic Vertebroplasty[J]. Neurochirurgie, 1987, 33(2): 166-168.

[16]

Peh W C, Gilula L A, Peck D D Percutaneous Vertebroplasty for Severe Osteoporotic Vertebral Body Compression Fractures[J]. Radiology, 2002, 223(1): 121-126.

[17]

Kaemmerlen P, Thiesse P, Jonas P, . Percutaneous Injection of Orthopedic Cement in Metastatic Vertebral Lesions[J]. N.Engl.J.Med., 1989, 321(2): 121-124.

[18]

Gangi A, Kastler B A, Dietemann J L Percutaneous Vertebroplasty Guided by a Combination of CT and Fluoroscopy[J]. AJNR. Am.J.Neuroradiol., 1994, 15(1): 83-86.

[19]

Weill A, Chiras J, Simon J M, . Spinal Metastases: Indications for and Results of Percutaneous Injection of Acrylic Surgical Cement[J]. Radiology, 1996, 199(1): 241-247.

[20]

Banerjee S, Baerlocher M O, Asch M R Back Stab: Percutaneous Vertebroplasty for Severe Back Pain[J]. Can.Fam.Physician, 2007, 53(7): 1 169-1 175.

[21]

Syed M I, Shaikh A Vertebroplasty: a Systematic Approach[J]. Pain. Physician, 2007, 10(2): 367-80.

[22]

Heran M K, Legiehn G M, Munk P L Current Concepts and Techniques in Percutaneous Vertebroplasty[J]. Orthop.Clin.North.Am., 2006, 37(3): 409-434.

[23]

Murphy K J, Lin D D Vertebroplasty: a Simple Solution to a Difficult Problem[J]. J.Clin.Densitom, 2001, 4(3): 189-197.

[24]

McKiernan F, Faciszewski T, Jensen R Quality of Life Following Vertebroplasty[J]. J.Bone Joint.Surg.Am., 2004, 86-A(12): 2 600-2 606.

[25]

Tamura J, Kawanabe K, Kobayashi M, . Mechanical and Biological Properties of Two Types of Bioactive Bone Cements Containing MgOCaO-SiO2-P2O5-CaF2 Glass and Glass-ceramic Powder[J]. J.Biomed. Mater.Res., 1996, 30(1): 85-94.

[26]

Kobayashi M, Nakamura T, Tamura J, . Mechanical and Biological Properties of Bioactive Bone Cement Containing Silica Glass Powder[J]. J. Biomed Mater.Res., 1997, 37(1): 68-80.

[27]

Shinzato S, Kobayashi M, Mousa W F, . Bioactive Polymethyl Methacrylate-based Bone Cement: Comparison of Glass Beads, Apatite- and Wollastonite-containing Glass-ceramic, and Hydroxyapatite Fillers on Mechanical and Biological Properties[J]. J.Biomed.Mater.Res., 2000, 51(2): 258-272.

[28]

Mousa W F, Kobayashi M, Shinzato S, . Biological and Mechanical Properties of PMMA-based Bioactive Bone Cements[J]. Biomaterials, 2000, 21(21): 2 137-2 146.

[29]

Daridona L, Oussouaddib O, Ahzia S Influence of the Material Constitutive Models on the Adiabatic Shear Band Spacing: MTS, Power Law and Johnson-Cook Models[J]. International Journal of Solids and Structures, 2004, 41(11–12): 3 109-3 124.

[30]

Teodora Gratiela Tihana MDI, Roxana Gabriela Popescua, Dana Iordachescub. Effect of Hydrophilic-hydrophobic Balance on Biocompatibility of Poly (methyl methacrylate) (PMMA)-hydroxyapatite (HA) Composites[J]. Materials Chemistry and Physics, 2009, 118(2–3): 265-269.

[31]

Ikarashi Y, Tsuchiya T, Nakamura A Effect of Heat Treatment of Poly(L-lactide) on the Response of Osteoblast-like MC3T3-E1 Cells[J]. Biomaterials, 2000, 21(12): 1 259-1 267.

[32]

Lowry O H, Rosebrough N J, Farr A L, . Protein Measurement with the Folin Phenol Reagent[J]. J.Biol.Chem., 1951, 193(1): 265-275.

[33]

Isama K, Tsuchiya T Effect of Gamma-ray Irradiated Poly(L-lactide) on the Differentiation of Mouse Osteoblast-like MC3T3-E1 Cells[J]. J.Biomater.Sci.Polym.Ed., 2002, 13(2): 153-166.

[34]

Orthopaedic J B Biomaterials in Research and Practice. Properties of Natural Materials[M], 1988 New York Churchill Livingstone

[35]

Ishikawa K, Takagi S, Chow L C, . Reaction of Calcium Phosphate Cements with Different Amounts of Tetracalcium Phosphate and Dicalcium Phosphate Anhydrous[J]. J.Biomed.Mater.Res., 1999, 46(4): 504-510.

[36]

Chiu R, Ma T, Smith RL, . Polymethylmethacrylate Particles Inhibit Osteoblastic Differentiation of MC3T3-E1 Osteoprogenitor Cells[J]. J.Orthop.Res., 2008, 26(7): 932-936.

[37]

Ma G K, Chiu R, Huang Z, . Polymethylmethacrylate Particle Exposure Causes Changes in p38 MAPK and TGF-beta Signaling in Differentiating MC3T3-E1 Cells[J]. J.Biomed.Mater.Res.A, 2010, 94(1): 234-240.

[38]

Kann S, Chiu R, Ma T, . OP-1 (BMP-7) Stimulates Osteoprogenitor Cell Differentiation in the Presence of Polymethylmethacrylate Particles[J]. J.Biomed.Mater.Res.A, 2010, 94(2): 485-488.

[39]

Lioubavina-Hack N, Lang N P, Karring T Significance of Primary Stability for Osseointegration of Dental Implants[J]. Clin.Oral. Implants.Res., 2006, 17(3): 244-250.

[40]

Albrektsson T Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry[M], 1985 Chicago Quintessence

[41]

Choquet V, Hermans M, Adriaenssens P, . Clinical and Radiographic Evaluation of the Papilla Level Adjacent to Single-tooth Dental Implants. A Retrospective Study in the Maxillary Anterior Region[J]. J.Periodontol, 2001, 72(10): 1 364-1 371.

[42]

Malo P, Rangert B, Nobre M All-on-4 Immediate-function Concept with Branemark System Implants for Completely Edentulous Maxillae: a 1-year Retrospective Clinical Study[J]. Clin.Implant.Dent.Relat.Res., 2005, 7(1): S88-S94.

[43]

Malo P, Nobre Mde A, Petersson U, . A Pilot Study of Complete Edentulous Rehabilitation with Immediate Function Using a New Implant Design: Case Series[J]. Clin.Implant.Dent.Relat.Res., 2006, 8(4): 223-32.

[44]

Nedir R, Bischof M, Szmukler-Moncler S, . Predicting Osseointegration by Means of Implant Primary Stability[J]. Clin.Oral. Implants.Res., 2004, 15(5): 520-528.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/