Gaseous and electrochemical hydrogen storage kinetics of as-quenched nanocrystalline and amorphous Mg2Ni-type alloys

Yanghuan Zhang , Tai Yang , Hongwei Shang , Guofang Zhang , Ying Cai , Dongliang Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 604 -611.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 604 -611. DOI: 10.1007/s11595-013-0738-x
Article

Gaseous and electrochemical hydrogen storage kinetics of as-quenched nanocrystalline and amorphous Mg2Ni-type alloys

Author information +
History +
PDF

Abstract

The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1−xCo x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The gaseous hydrogen storage kinetics of the alloys was measured using an automatically controlled Sieverts apparatus. The alloy electrodes were charged and discharged with a constant current density in order to investigate the electrochemical hydrogen storage kinetics of the alloys. The results demonstrate that the substitution of Co for Ni results in the formation of secondary phases MgCo2 and Mg instead of altering the major phase Mg2Ni. No amorphous phase is detected in the as-quenched Cofree alloy, however, a certain amount of amorphous phase is clearly found in the as-quenched alloys substituted by Co. Furthermore, both the rapid quenching and the Co substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys, for which the notable increase of the hydrogen diffusion coefficient (D) along with the limiting current density (I L) and the obvious decline of the electrochemical impedance generated by both the Co substitution and the rapid quenching are basically responsible.

Keywords

Mg2Ni-type alloy / rapid quenching / substituting Ni with Co / hydrogen storage kinetics

Cite this article

Download citation ▾
Yanghuan Zhang, Tai Yang, Hongwei Shang, Guofang Zhang, Ying Cai, Dongliang Zhao. Gaseous and electrochemical hydrogen storage kinetics of as-quenched nanocrystalline and amorphous Mg2Ni-type alloys. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(3): 604-611 DOI:10.1007/s11595-013-0738-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jain I P, Lal C, Jain A Hydrogen Storage in Mg: A Most Promising Material[J]. Int. J. Hydrogen Energy, 2009, 35(10): 5 133-5 144.

[2]

Zhao X Y, Ma L Q Recent Progress in Hydrogen Storage Alloys for Nickel/Metal Hydride Secondary Batteries[J]. Int. J. Hydrogen Energy, 2009, 34(11): 4 788-4 796.

[3]

Kwon S N, Baek S H, Mumm D R, . Enhancement of the Hydrogen Storage Characteristics of Mg by Reactive Mechanical Grinding with Ni, Fe and Ti[J]. Int. J. Hydrogen Energy, 2008, 33(17): 4 586-4 592.

[4]

Palade P, Sartori S, Maddalena A, . Hydrogen Storage in Mg-Ni-Fe Compounds Prepared by Melt Quenching and Ball Milling[J]. J. Alloys Compd., 2006, 415(1–2): 170-176.

[5]

Zaluski L, Zaluska A, Ström-Olsen J O Hydrogen Absorption in Nanocrystalline Mg2Ni Formed by Mechanical Alloying[J]. J. Alloys Compd., 1995, 217(2): 245-249.

[6]

Spassov T, Köster U Thermal Stability and Hydriding Properties of Nanocrystalline Melt-quenched Mg63Ni30Y7 Alloy[J]. J. Alloys Compd., 1998, 279(2): 279-286.

[7]

Woo J H, Lee K S Electrode Characteristics of Nanostructured Mg2Nitype Alloys Prepared by Mechanical Alloying[J]. J. Electrochem. Soc., 1999, 146(3): 819-823.

[8]

Williamson G K, Hall W H X-ray Line Broadening from Filed Aluminium and Wolfram[J]. Acta Metall., 1953, 1(1): 22-31.

[9]

Takahashi Y, Yukawa H, Morinaga M Alloying Effects on the Electronic Structure of Mg2Ni Intermetallic Hydride[J]. J. Alloys Compd., 1996, 242(1–2): 98-107.

[10]

Zhang Y H, Li B W, Ren H P, . An Electrochemical Investigation of Melt-quenched Nanocrystalline Mg20Ni10−xCux (x = 0–4) Electrode Alloys[J]. Int. J. Hydrogen Energy, 2010, 35(6): 2 385-2 392.

[11]

Zheng G, Popov B N, White R E Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution[J]. J. Electrochem. Soc., 1995, 142(8): 2 695-2 698.

[12]

Wu Y, Hana W, Zhou S X, . Microstructure and Hydrogenation Behavior of Ball-milled and Melt-quenched Mg-10Ni-2Mm Alloys[J]. J. Alloys Compd., 2008, 466(1–2): 176-181.

[13]

Niu H, Northwood D O Enhanced Electrochemical Properties of Ballmilled Mg2Ni Electrodes[J]. Int. J. Hydrogen Energy, 2002, 27(1): 69-77.

[14]

Zhang Y H, Li B W, Ren H P, . Hydriding and Dehydriding Characteristics of Nanocrystalline and Amorphous Mg20Ni10−xCox (x = 0–4) Alloys Prepared by Melt-quenching[J]. Int. J. Hydrogen Energy, 2009, 34(6): 2 684-2 691.

[15]

Gasiorowski A, Iwasieczko W, Skoryna D, . Hydriding Properties of Nanocrystalline Mg2-xMxNi Alloys Synthesized by Mechanical Alloying (M = Mn, Al)[J]. J. Alloys Compd., 2004, 364(1–2): 283-288.

[16]

Kuriyama N, Sakai T, Miyamura H, . Electrochemical Impedance and Deterioration Behavior of Metal Hydride Electrodes[J]. J. Alloys Compd., 1993, 202(1–2): 183-197.

[17]

Zhao X Y, Ding Y, Ma L Q, . Electrochemical Properties of MmNi3.8Co0.75Mn0.4Al0.2 Hydrogen Storage Alloy Modified with Nanocrystalline Nickel[J]. Int. J. Hydrogen Energy, 2008, 33(22): 6 727-6 733.

[18]

Ratnakumar B V, Witham C, Bowman R C, . Electrochemical Studies on LaNi5-xSnx Metal Hydride Alloys[J]. J. Electrochem. Soc., 1996, 143(8): 2 578-2 584.

[19]

Liu Y F, Pan H G, Gao M X, . The Effect of Mn Substitution for Ni on the Structural and Electrochemical Properties of La0.7Mg0.3 Ni2.55−xCo0.45Mnx Hydrogen Storage Electrode Alloys[J]. Int. J. Hydrogen Energy, 2004, 29(3): 297-305.

[20]

Zhang Y H, Guo S H, Qi Y, . Enhanced Electrochemical Characteristics of As-quenched Nanocrystalline and Amorphous Mg2Ni-type Alloy Electrodes[J]. J. Alloys Compd., 2010, 506(2): 749-756.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/