Influence of coupled chemo-mechanical process on corrosion characteristics in reinforcing bars

Yidong Xu , Chunxiang Qian

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 538 -543.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 538 -543. DOI: 10.1007/s11595-013-0727-0
Article

Influence of coupled chemo-mechanical process on corrosion characteristics in reinforcing bars

Author information +
History +
PDF

Abstract

We studied the corrosion characteristics of reinforcing bars in concrete under different corrosion conditions. The area-box (AB) value was used to classify the shape of pitting corrosion morphology in meso-scale, and fractographs of reinforcing bars with different corrosion morphology were discussed in micro- and macro-scales. The results show that the existence of the tensile stress affects the corrosion characteristics of reinforcing bars. The pitting morphology and fractograph of reinforcing bars exhibit a statistical fractal feature. The linear regression model fits the relationship between fractal dimensions of corrosion morphology and fractal dimension of fractograph fairly well. Using fractal dimension as the characterization parameter can not only reflect the characteristics of pitting corrosion morphology in reinforcing bars, but also reveal the fracture feature of corroded reinforcing bars.

Keywords

reinforcing bar / chemo-mechanical coupling / pitting corrosion morphology / fractograph / fractal

Cite this article

Download citation ▾
Yidong Xu, Chunxiang Qian. Influence of coupled chemo-mechanical process on corrosion characteristics in reinforcing bars. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(3): 538-543 DOI:10.1007/s11595-013-0727-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koleva D A, de Wit J H W, van Breugel K, . Correlation of Microstructure, Electrical Properties and Electrochemical Phenomena in Reinforced Mortar. Breakdown to Multi-Phase Interface Structures. Part II: Pore Network, Electrical Properties and Electrochemical Response[J]. Mater. Charact., 2008, 59(6): 801-815.

[2]

Koleva D A, van Breugel K, de Wit J H W, . Correlation of Microstructure, Electrical Properties and Electrochemical Phenomena in Reinforced Mortar. Breakdown to Multi-Phase Interface Structures. Part I: Microstructural Observations and Electrical Properties[J]. Mater. Charact., 2008, 59(3): 290-300.

[3]

Saremi M, Mahallati E A Study on Chloride-Induced Depassivation of Mild Steel in Simulated Concrete Pore Solution[J]. Cem. Concr. Res., 2002, 32(12): 1 915-1 921.

[4]

Yuan Y S, Ji Y S Modeling Corroded Section Configuration of Steel Bar in Concrete Structure[J]. Constr. Build. Mater., 2009, 23(6): 2 461-2 466.

[5]

Almusallam A A Effect of Degree of Corrosion on the Properties of Reinforcing Steel Bars[J]. Constr. Build. Mater., 2001, 15(8): 361-368.

[6]

Du Y G, Clark L A, Chan A H C Residual Capacity of Corroded Reinforcing Bars[J]. Mag. Concr. Res., 2005, 57(3): 135-147.

[7]

Jaffer S J, Hansson C M Chloride-Induced Corrosion Products of Steel in Cracked-Concrete Subjected to Different Loading Conditions[J]. Cem. Concr. Res., 2009, 39(2): 116-125.

[8]

Ahn W, Reddy D V Galvanostatic Testing for the Durability of Marine Concrete under Fatigue Loading[J]. Cem. Concr. Res., 2001, 31(3): 343-349.

[9]

Apostolopoulos C A, Papadopoulos M P, Pantelakis S G Tensile Behavior of Corroded Reinforcing Steel Bars BSt 500(s)[J]. Constr. Build. Mater., 2006, 20(9): 782-789.

[10]

Papadakis V G, Apostolopoulos C A Consequences of Steel Corrosion on the Ductility Properties of Reinforcement Bar[J]. Constr. Build. Mater., 2008, 22(12): 2 316-2 324.

[11]

Mandelbrot B B, Passoja D E, Paullay A J Fractal Character of Fracture Surfaces of Metals[J]. Nature, 1984, 308(5961): 721-722.

[12]

Costa J M, Sagués F, Vilarrasa M Fractal Patterns from Corrosion Pitting[J]. Corros. Sci., 1991, 32(5–6): 665-668.

[13]

Azevedo C R F, Marques E R Three-Dimensional Analysis of Fracture, Corrosion and Wear Surfaces[J]. Eng. Fail. Anal., 2010, 17(1): 286-300.

[14]

Codaro E N, Nakazato R Z, Horovistiz A L, . An Image Processing Method for Morphology Characterization and Pitting Corrosion Evaluation[J]. Mat. Sci. Eng. A-Struct., 2002, 334(1–2): 298-306.

[15]

Silva J W J, Bustamante A G, Codaro E N, . Morphological Analysis of Pits Formed on Al 2024-T3 in Chloride Aqueous Solution[J]. Appl. Surf. Sci., 2004, 236(1–4): 356-365.

[16]

Charkaluk E, Bigerelle M, Iost A Fractals and Fracture[J]. Eng. Fract. Mech., 1998, 61(1): 119-139.

[17]

Parrington R J Fractography of Metals and Plastics[J]. Plast. Eng., 2000, 56(12): 54-59.

[18]

Zhang Z L, Thaulow C, Odegard J A Complete Gurson Model Approach for Ductile Fracture[J]. Eng. Fract. Mech., 2000, 67(2): 155-168.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/