Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles

Hanning Duan , Songliu Yuan , Xianfeng Zheng , Zhaoming Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 467 -470.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 467 -470. DOI: 10.1007/s11595-013-0714-5
Article

Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles

Author information +
History +
PDF

Abstract

Memory effect has been studied in the system using magnetic nanoparticles with Ni nanocore encapsulated by non-magnetic and oxidation-resistant Ni2P nanoshell acquired through surface-phosphatizing Ni nanoparticles. The self-assembled array with interparticle spacing of about 6 nm shows memory effect up to 200 K below its average blocking temperature of 260 K. And reducing the interparticle spacing of the self-assembled array via annealing can further enlarge the temperature range of memory effect up to room-temperature. The memory effect can be understood based on the thermal relaxation theory of single-domain magnetic nanoparticles. Furthermore, the read-write magnetic coding is realized based on the temperature changes, using the memory effect up to room-temperature, which may be useful for future memory devices.

Keywords

core-shell / magnetic nanoparticles / memory effect

Cite this article

Download citation ▾
Hanning Duan, Songliu Yuan, Xianfeng Zheng, Zhaoming Tian. Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(3): 467-470 DOI:10.1007/s11595-013-0714-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bader S D Colloquium: Opportunities in Nanomagnetism[J]. Rev. Mod. Phys., 2006, 78(1): 1-15.

[2]

Jun Y W, Seo J W, Cheon J Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences[J]. Acc. Chem. Res., 2008, 41(2): 179-189.

[3]

Sun Y, Salamon M B, Garnier K, . Memory Effects in an Interacting Magnetic Nanoparticle System[J]. Phys. Rev. Lett., 2003, 91(16): 167 206

[4]

Chakraverty S, Bandyopadhyay M, Chatterjee S, . Memory in a Magnetic Nanoparticle System: Polydispersity and Interaction Effects[J]. Phys. Rev. B, 2005, 71(5): 054 401

[5]

Wang W Z, Deng J J, Lu J, . Memory Effect in a System of Zincblende Mn-rich Mn(Ga)As Nanoclusters Embedded in GaAs[J]. Appl. Phys. Lett., 2007, 91(20): 202 503

[6]

Park J, Kang E, Son S U, . Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction[J]. Adv. Mater., 2005, 17(4): 429-434.

[7]

Shao H P, Huang Y Q, Lee H S, . Cobalt Nanoparticles Synthesis from Co(CH3COO)2 by Thermal Decomposition[J]. J. Magn. Magn. Mater., 2006, 304(1): e28-e30.

[8]

Li P, Guan J G, Zhang Q J, . Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2005, 20(4): 35-37.

[9]

Zheng X F, Yuan S L, Tian Z M, . Nickel/Nickel Phosphide Core-Shell Structured Nanoparticles: Synthesis, Chemical, and Magnetic Architecture[J]. Chem. Mater., 2009, 21(20): 4 839-4 845.

[10]

Jang S J, Kong W J, Zeng H Magnetotransport in Fe3O4 Nanoparticle Arrays Dominated by Noncollinear Surface Spins[J]. Phys. Rev. B, 2007, 76(21): 212 403

[11]

Yang H T, Hasegawa D, Takahashi M, . Achieving a Noninteracting Magnetic Nanoparticle System Through Direct Control of Interparticle Spacing[J]. Appl. Phys. Lett., 2009, 94(1): 013 103

[12]

Néel L Théorie Du Traínage Magnétique Des Ferromagnétiques En grains Fins Avec Application Aux Terres Cuites[J]. Ann. Géophys., 1949, 5: 99-136.

[13]

Brown W F Thermal Fluctuations of a Single-Domain Particle[J]. Phys. Rev., 1963, 130(5): 1 677-1 686.

[14]

Bae C J, Angappane S, Park J G, . Experimental Studies of Strong Dipolar Interparticle Interaction in Monodisperse Fe3O4 Nanoparticles[J]. Appl. Phys. Lett., 2007, 91(10): 102 502

[15]

Singh V, Seehra M S, Bonevich J Nickel-silica Nanocomposite: Variation of the Blocking Temperature with Magnetic Field and Measuring Frequency[J]. J. Appl. Phys., 2008, 103(7): 07D 524

[16]

Wang F, Kim J, Kim Y J, . Spin-glass Behavior in LuFe2O4[J]. Phys. Rev. B, 2009, 80(2): 024 419

[17]

Nunes W C, Biasi E D, Meneses C T, . Magnetic Behavior of Ni Nanoparticles with High Disordered Atomic Structure[J]. Appl. Phys. Lett., 2008, 92(18): 183 113

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/