Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles
Hanning Duan , Songliu Yuan , Xianfeng Zheng , Zhaoming Tian
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 467 -470.
Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles
Memory effect has been studied in the system using magnetic nanoparticles with Ni nanocore encapsulated by non-magnetic and oxidation-resistant Ni2P nanoshell acquired through surface-phosphatizing Ni nanoparticles. The self-assembled array with interparticle spacing of about 6 nm shows memory effect up to 200 K below its average blocking temperature of 260 K. And reducing the interparticle spacing of the self-assembled array via annealing can further enlarge the temperature range of memory effect up to room-temperature. The memory effect can be understood based on the thermal relaxation theory of single-domain magnetic nanoparticles. Furthermore, the read-write magnetic coding is realized based on the temperature changes, using the memory effect up to room-temperature, which may be useful for future memory devices.
core-shell / magnetic nanoparticles / memory effect
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
/
| 〈 |
|
〉 |