Preparative optimization of cellulose microspheres applied as supports for high-performance liquid chromatography

Wei Chen , Juan Zhang , Qingchun Fan , Zhengwu Bai , Xingping Zhou , Xiaolin Xie

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 460 -466.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 460 -466. DOI: 10.1007/s11595-013-0713-6
Article

Preparative optimization of cellulose microspheres applied as supports for high-performance liquid chromatography

Author information +
History +
PDF

Abstract

The aim of this work is optimizing the techniques to prepare pure cellulose microspheres, which are used as packing adsorbents for high-performance liquid chromatography. Thereupon, cellulose was dissolved in a pre-cooled NaOH/urea solution, from which various-size microspheres were prepared. The volume-average diameters were controlled approximately at 30 μm, 8 μm and 4 μm grades when cyclohexane, liquid paraffin and pump oil were used as dispersants, respectively. The present investigations reveal that higher viscosity dispersant is suitable for the preparation of smaller-size microspheres, while larger size microspheres are prepared preferably using lower-viscosity dispersant. The chiral stationary phase derived from 8 μm grade microspheres can separate the enantiomers of efavirenz.

Keywords

cellulose / NaOH/urea aqueous solution / microsphere / packing material / high-performance liquid chromatograph

Cite this article

Download citation ▾
Wei Chen, Juan Zhang, Qingchun Fan, Zhengwu Bai, Xingping Zhou, Xiaolin Xie. Preparative optimization of cellulose microspheres applied as supports for high-performance liquid chromatography. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(3): 460-466 DOI:10.1007/s11595-013-0713-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Petra M, Dane M Chemical Structure Analysis of Starch and Cellulose Derivatives[J]. Adv. Carbohydr. Chem. Biochem., 2010, 64: 117-210.

[2]

Serge P, Danile S Structure and Engineering of Cellulose[J]. Adv. Carbohydr. Chem. Biochem., 2010, 64: 25-116.

[3]

Klemm D, Philipp B, Heinze T, . Functionalization of Cellulose: Comprehensive Cellulose Chemistry[M], 1998 Weinheim Wiley-VCH Verlag GmbH

[4]

Chambin O, Champion D, Debray C, . Effects of Different Cellulose Derivatives on Drug Release Mechanism Studied at a Preformulation Stage[J]. J. Control. Release, 2004, 95: 101-108.

[5]

Taepaiboon P, Rungsardthong U, Supaphol P Vitamin-loaded Electrospun Cellulose Acetate Nanofiber Mats as Transdermal and Dermal Therapeutic Agents of Vitamin A Acid and Vitamin E[J]. Eur. J. Pharm. Biopharm., 2007, 67: 387-397.

[6]

Barroso T, Temtem M, Hussain A, . Preparation and Characterization of a Cellulose Affinity Membrane for Human Immunoglobulin G (IgG) Purification[J]. J. Membr. Sci., 2010, 348: 224-230.

[7]

Jantarat C, Tangthong N, Songkro S, . S-Propranolol Imprinted Polymer Nanoparticle-on-microsphere Composite Porous Cellulose Membrane for the Enantioselectively Controlled Delivery of Racemic Propranolol[J]. Int. J. Pharm., 2008, 349: 212-225.

[8]

Francotte E, Wolf R M, Lohmann D Chromatographic Resolutoin of Racemates on Chiral Stationary Phases I. Influence of the Supramolecular Structure of Cellulose Triacetate[J]. J. Chromatogr., 1985, 347: 25-37.

[9]

Francotte E, Wolf R M Chromatographic Resolution on Methylbenzoylcellulose Beads-Modulation of the Chiral Recognition by Variation of the Position of the Methyl Group on the Aromatic Ring[J]. J. Chromatogr., 1992, 595: 63-75.

[10]

Ikai T, Yamamoto C, Kamigaito M, . Organic-inorganic Hybrid Materials for Efficient Enantioseparation Using Cellulose 3,5-Dimet hylphenylcarbamate and Tetraethyl Orthosilicate[J]. Chem. Asian J., 2008, 3: 1 494-1 499.

[11]

Okamoto Y Chiral Polymers for Resolution of Enantiomers[J]. J. Polym. Sci., Part A: Polym. Chem., 2009, 47: 1 731-1 739.

[12]

Li J, Ikai T, Okamoto Y Preparation and HPLC Application of Chiral Stationary Phase from 4-tert-Butylphenylcarbamates of Cellulose and Amylose Immobilized onto Silica Gel[J]. J. Sep. Sci., 2009, 32: 2 885-2 891.

[13]

Heinze T, Liebert T Unconventional Methods in Cellulose Functionalization[J]. Prog. Polym. Sci., 2001, 26: 1 689-1 762.

[14]

Michael M, Ibbett R N, Howarth O W Interaction of Cellulose with Amine Oxide Solvents[J]. Cellulose, 2000, 7: 21-33.

[15]

Potthast A, Rosenau T, Sixta H, . Degradation of Cellulosic Materials by Heating in DMAc/LiCl[J]. Tetrahedron Lett., 2002, 43: 7 757-7 759.

[16]

Tosh B, Saikia C N, Dass N N Homogeneous Esterification of Cellulose in the Lithium Chloride-N, N-dimethylacetamide Solvent System: Effect of Temperature and Catalyst[J]. Carbohydr. Res., 2000, 327: 345-352.

[17]

Zhang H, Wu J, Zhang J, . 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose[J]. Macromolecules, 2005, 38: 8 272-8 277.

[18]

Heinze T, Schwikal K, Barthel S Ionic Liquids as Reaction Medium in Cellulose Functionalization[J]. Macromol. Biosci., 2005, 5: 520-525.

[19]

Kosan B, Michels C, Meister F Dissolution and Forming of Cellulose with Ionic Liquids[J]. Cellulose, 2008, 15: 59-66.

[20]

Luo X, Zhang L New Solvents and Functional Materials Prepared from Cellulose Solutions in Alkali/urea Aqueous System[J]. Food Res. Int., 2013, 52: 387-400.

[21]

Cai J, Zhang L Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions[J]. Macromol. Biosci., 2005, 5: 539-548.

[22]

Mao Y, Zhou J, Cai J, . Effects of Coagulants on Porous Structure of Membranes Prepared from Cellulose in NaOH/urea Aqueous Solution[J]. J. Membr. Sci., 2006, 279: 246-255.

[23]

Ruan D, Zhang L, Lue A, . A Rapid Process for Producing Cellulose Multi-filament Fibers from a NaOH/Thiourea Solvent System[J]. Macromol. Rapid Commun., 2006, 27: 1 495-1 500.

[24]

Luo X, Zhang L Creation of Regenerated Cellulose Microspheres with Diameter Ranging from Micron to Millimeter for Chromatography Applications[J]. J. Chromatogr. A, 2010, 1217: 5 922-5 929.

[25]

Rabek J Experimental Methods in Polymer Chemistry[M], 1980 New York Wiley

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/