In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power

Xiaohong Xu , Xionghua Ma , Jianfeng Wu , Ling Chen , Tao Xu , Mengqi Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 407 -412.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (3) : 407 -412. DOI: 10.1007/s11595-013-0704-7
Article

In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power

Author information +
History +
PDF

Abstract

In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using α-Al2O3, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W a), bulk density (D b), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 °C and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100°C by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption the bulk density and bending strength are 0.32%, 2.58 g·cm−3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.

Keywords

solar thermal power generation / heat transfer tube / mullite-cordierite / composite ceramic

Cite this article

Download citation ▾
Xiaohong Xu, Xionghua Ma, Jianfeng Wu, Ling Chen, Tao Xu, Mengqi Zhang. In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(3): 407-412 DOI:10.1007/s11595-013-0704-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buck R, Barth C, Ecket M, . Dual-Receiver Concept for Solar Towers [J]. Sol. Energy, 2006, 80(10): 1 249-1 254.

[2]

Forsberg C W, Peterson P F, Zhao H H High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers [J]. J. Sol. Energy. Eng. Trans. ASME, 2007, 129(2): 141-146.

[3]

Hennecke K, Hoffschmidt B, Koll G, . The Solar Power Tower Julich: A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology[C]. in ISES Solar World Congress 2007, Solar Energy and Human Settlement, 2007

[4]

Gold R E, Harrod D L Refractory Metal Alloys for Fusion Reactor Applications [J]. J. Nucl. Mater., 1979, 85–86(2): 805-815.

[5]

Viswanathan R, Bakker W Materials for Ultrasupercritical Coal Power Plants-Boiler Materials: Part I [J]. J. Mater. Eng. Perform., 2001, 10: 81-95.

[6]

Viswanathan R, Bakker W Materials for Ultrasupercritical Coal Power Plants-Turbine Materials: Part II [J]. J. Mater. Eng. Perform., 2001, 10: 96-101.

[7]

Murty K L, Charit I Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities [J]. J. Nucl. Mater., 2008, 383: 189-195.

[8]

Ukai S, Harada M, Okada H, . Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials[J]. J. Nucl. Mater., 1993, 204: 65-73.

[9]

Boehlert C J, Longanbach S C A Comparison of the Microstructure and Creep Behavior of Cold Rolled HAYNES230 Alloy and HAYNES282 Alloy [J]. Mater. Sci. Eng. A, 2011, 528: 4 888-4 898.

[10]

Allen D, Keustermans J P, Gijbels S, . Creep Rupture and Ductility of as-Manufactured and Service-Aged Nickel Alloy IN617 Materials and Welds[J]. Mater. High. Temp., 2004, 21: 55-60.

[11]

XU X H, JIAO G H, WU J F, . Effect of Nano-ZrO2 on Microstructure and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power[J]. J. Wuhan. Univ. Technol.—Mater. Sci. Ed., 2011, 4: 285-289.

[12]

XU X H, MA X H, WU J F, . Preparation and Thermal Shock Resistance of Cordierite-Mullite Composite Ceramic for Solar Thermal Power [J]. J. Wuhan. Univ. Technol., 2012, 34(1): 1-6.

[13]

XU X H, MA X H, WU J F, . In-Situ Preparation and Thermal Shock Behavior of Corundum-Mullite-Magnesium Aluminate Spinel Composite Ceramic[J]. J. Chin. Ceram. Soc., 2012, 40(10): 1 387-1 393.

[14]

Braganc S R, Bergmann C P A View of Whitewares Mechanical Strength and Microstructure[J]. Ceram. Int., 2003, 29: 801-806.

[15]

Chesters J H Refractories: Production and Properties[M], 1983 Berkeley The Iron and Steel Institute of Materials

[16]

Harada R, Sugiyama N, Ishida H Al2O3-Strengthened Feldspathic Porcelain Bodies: Effects of the Amount and Particle Size of Alumina[J]. Ceram. Eng. Sci. Proc., 1996, 17(1): 88-98.

[17]

Brindley G W, Nakahira M The Kaolinite-Mullite Reaction Series: I. A Survey of Outstanding Problems[J]. J. Am. Ceram. Soc., 1959, 42: 311-314.

[18]

Brindley G W, Nakahira M The Kaolinite-Mullite Reaction Series: II.Metakaolin [J]. J. Am. Ceram. Soc., 1959, 42: 315-318.

[19]

Brindley G W, Nakahira M The Kaolinite-Mullite Reaction Series: III. The High Temperature Phases[J]. J. Am. Ceram. Soc., 1959, 42: 319-324.

[20]

Dana K, Das S, Swapan, . Effect of Substitution of Fly Ash for Quartz in Triaxial Kaolin-Quartz-Feldspar System[J]. J. Eur. Ceram. Soc., 2004, 24: 3 169-3 175.

[21]

Tan H l, Yang W Toughening Mechanisms of Nano-Composite Ceramics [J]. Mech. Mater., 1998, 30: 111-123.

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/