Direct synthesis of Zn1−xCd xS (0⩽x⩽1) quantum dots in aqueous solution and application in biology

Keyang Huang , Shengtai He , Yulan Liu , Yongxiao Zhang , Yanan Li , Xiaoqin Hou , Hu Xu , Minglin Sun , Lingang Wen

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 265 -268.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 265 -268. DOI: 10.1007/s11595-013-0676-7
Advanced Materials

Direct synthesis of Zn1−xCd xS (0⩽x⩽1) quantum dots in aqueous solution and application in biology

Author information +
History +
PDF

Abstract

A simple procedure was presented to directly synthesize Zn1−xCd xS (0⩽x⩽1) quantum dots (QDs) in aqueous solution. QDs’ structures and properties were characterized by TEM (transmission electron microscopy), XRD (X-ray diffraction) and fluorescence microscopy. For those as-synthesized Zn1−xCd xS QDs, when the molar ratio between Zn and Cd changed from 1 to 0, its photoluminescence (PL) emission peak shifted from 430 nm to 675 nm. PL emission quantum efficiency was up to 15%. The experiment results demonstrated that those alloyed QDs showed a good biocompatibility and could be used as labelling materials in cell biology.

Keywords

Zn1−xCd xS / quantum dot / luminescence / synthesis

Cite this article

Download citation ▾
Keyang Huang, Shengtai He, Yulan Liu, Yongxiao Zhang, Yanan Li, Xiaoqin Hou, Hu Xu, Minglin Sun, Lingang Wen. Direct synthesis of Zn1−xCd xS (0⩽x⩽1) quantum dots in aqueous solution and application in biology. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(2): 265-268 DOI:10.1007/s11595-013-0676-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma N, Tikhomirov G, Kelly SO Uucleic Acid-Passivated Semiconductor Nanocrystals: Biomolecular Templating of Form and Function [J]. Accounts of Chemical Research, 2010, 43(2): 173-180.

[2]

Medintz IL, Uyeda HT, Goldman ER, . Quantum Dot Bioconjugates for Imaging, Labelling and Sensing [J]. Nature Materials, 2005, 4(6): 435-446.

[3]

Jaiswal JK, Mattoussi H, Mauro JM, . Long-Term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates[J]. Nature Biotechnology, 2003, 21(1): 47-51.

[4]

Michalet X, Pinaud FF, Bentolila LA, . Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307: 538-544.

[5]

Sangvi AB, Miller K P-H, Belcher AM, . Biomaterials Functionalization Using a Novel Peptide that Selectively Binds to a Conducting Polymer[J]. Nature Materials, 2005, 4(6): 496-502.

[6]

Gaponik N, Talapin DV, Rogach AL, . Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes [J]. Journal of Physical Chemistry B, 2002, 106(29): 7177-7185.

[7]

De la Fuente JM, Fandel M, Berry CC, . Quantum Dots Protected with Tiopronin: A New Fluorescence System for Cell-Biology Studies [J]. Chem. Bio. Chem., 2005, 6(6): 989-991.

[8]

Zhang H, Zhou Z, Yang B, . The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J]. Journal of Physical Chemistry B, 2003, 107(1): 8-13.

[9]

Lee J, Yang B, Li R, . Poly(allylamine)-Encapsulated Water-Soluble CdSe Nanocrystals[J]. Journal of Physical Chemistry B, 2007, 111(1): 81-87.

[10]

Baumle M, Stamou D, Segura JM, . Highly Fluorescent Streptavidin-Coated CdSe Nanoparticles: Preparation in Water, Characterization, and micropatterning[J]. Langmuir, 2004, 20(10): 3 828-3 831.

[11]

Bao H, Gong Y, Li Z, . Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure [J]. Chemistry of Materials, 2004, 16(20): 3 853-3 859.

[12]

Xie R, Kolb U, Li J, . Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0. 5Cd0.5S/ZnS Multishell Nanocrystals[J]. Journal of the Amcrican Chemical Society, 2005, 127(20): 7 480-7 488.

[13]

Gerion D, Pinaud F, Williama SC, . Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots[J]. Journal of Physical Chemistry B, 2001, 105(37): 8 861-8 871.

[14]

Talapin DV, Mekis I, Gotzinger S, . CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals [J]. Journal of Physical Chemistry B, 2004, 108(49): 18 826-18 831.

[15]

Aharoni A, Mokari T, Porov I, . Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable Near-Infrared Fluorescence[J]. Journal of the American Chemical Society, 2006, 128(1): 257-264.

[16]

Jiang W, Singhal A, Zheng J, . Optimizing the Synthesis of Redto Near-IR-Emitting CdS-Capped CdTexSe1−x Alloyed Quantum Dots for Biomedical Imaging[J]. Chemistry of Materials, 2006, 18(20): 4 845-4 854.

[17]

Zhong X, Feng Y, Knoll W, . Alloyed ZnxCd1−xS Nanocrystals with Highly Narrow Luminescence Spectral Width[J]. Journal of the American Chemical Society, 2003, 125(44): 13 559-13 563.

[18]

Zheng Y, Yang Z, Ying JY Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1−xCdxSe Alloyed Quantum Dots[J]. Advanced Materials, 2007, 19(11): 1 475-1 479.

[19]

Barrientos AG, De La Fuente JM, Rojas TC, . Gold Glyconanoparticles: Synthetic Polyvalent Ligands Mimicking Glycocalyx-like Surfaces as Tools for Glycobiological Studies[J]. Chemistry-A European Journal, 2003, 9(9): 1 909-1 921.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/