Microcellular foaming of plasticized thin PC sheet I. Effects of processing conditions

Hao Chen , Rong Guan , Jingzuo Zhao , Shufang Jiang , Zhao Ke , Shangwen Zha

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 235 -242.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 235 -242. DOI: 10.1007/s11595-013-0671-z
Advanced Materials

Microcellular foaming of plasticized thin PC sheet I. Effects of processing conditions

Author information +
History +
PDF

Abstract

Novel microcellular foams using thin plasticized PC sheet were prepared by compression molding. The measurement results showed that T g of plasticized PC was decreased and the molecular chain mobility was increased. Decrease in T g and increase in chains mobility were contributed to the widen of foaming temperature window. Effects of processing conditions on cell size, cell density and relative density were also investigated. The experimental results show that the temperature, tributyl citrate and foaming agent content have more effects on the structures and morphology of the plasticized PC microcellular foam. Effects of experimental conditions on cell size distribution have also been discussed.

Keywords

plasticization / microcellular foam / polycarbonate / compression molding

Cite this article

Download citation ▾
Hao Chen, Rong Guan, Jingzuo Zhao, Shufang Jiang, Zhao Ke, Shangwen Zha. Microcellular foaming of plasticized thin PC sheet I. Effects of processing conditions. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(2): 235-242 DOI:10.1007/s11595-013-0671-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seeler K, Kumar V Tension-Tension Fatigue of Microcellular Polycarbonate: Initial Rresults[J]. J. Reinf. Plast. Comp., 1993, 12(3): 359-376.

[2]

Collias DI, Baird DG, Borggreve RJM Impact Toughening of Polycarbonate by Microcellular Foaming[J]. Polymer, 1994, 35(18): 3 978-3 983.

[3]

Collias DI, Baird DG Tensile Toughness of Microcellular Foams of Polystyrene, Styrene-Acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of the Same Polymer Matrices and Microcellular Foams[J]. Polym. Eng. Sci., 1995, 35(14): 1 167-1 177.

[4]

Collias DI, Baird DG Impact Behavior of Microcellular Foams of Polystyrene and Styrene-Acrylonitrile Copolymer, and Ssingle-Edge-Notched Tensile Toughness of Microcellular Foams of Polystyrene, Styrene-Acrylonitrile Copolymer, and Palycarbonate[J]. Polym. Eng. Sci., 1995, 35(14): 1 178-1 183.

[5]

Doroudiani S, Park CB, Kortschot MT Processing and Characterization of Microcellular Foamed High-Density Polythylene/isotactic Polypropylene Blends[J]. Polym. Eng. Sci., 1998, 38(7): 1 205-1 215.

[6]

Matuana LM, Park CB, Balatinecz JJ Cell Morphology and Property Relationships of Microcellular Foamed PVC/Wood-Fiber Composites[J]. Polym. Eng. Sci., 1998, 38(11): 1 862-1 872.

[7]

Suh KW, Park CP, Maurer M, Tusim MH, Genova RD, Broos R, Sophiea D Lightweight Cellular Plastics[J]. Adv. Mater., 2000, 12(23): 1 779-1 789.

[8]

Kabumoto A, Yoshida N, Ito M, Okada M Light Reflecting Plate[P], 1998 12

[9]

Baldwin D, Tate D, Park C, Cha S, Suh N Microcellular Plastics Processing Technology[J]. Seikei-Kakou, 1994, 6(3): 187-194.

[10]

Matuana LM, Park CB, Balatinecz JJ Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride[J]. Cell. Polym., 1998, 17(1): 1-16.

[11]

Klempner D, Sendijarevic V, Aseeva RM Handbook of Polymeric Foams and Foam Technology[M], 2004 2nd Edition 17-28.

[12]

Wang J, Cheng X, Yuan M, He J An Investigation on the Microcellular Structure of Polystyrene/LCP Blends Prepared by Using Supercritical Carbon Dioxide[J]. Polymer, 2001, 42(19): 8 265-8 275.

[13]

Wang J, Cheng X, Yuan M, He J Preparation and Characterization of Microcellular Polystyrene/Polystyrene Ionomer Blends with Supercritical Carbon Dioxide Polymer[J]. J. Polym. Sci. Pol. Phys., 2003, 41(4): 368-377.

[14]

Sun X, Liu H, Li G, Liao X, He J Investigation on the Cell Nucleation and Cell Growth in Microcellular Foaming by means of Temperature Quenching[J]. J. Polym. Sci., 2004, 93(1): 163-171.

[15]

Matuana LM, Park CB, Balatinecz JJ Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride[J]. Cell. Polym., 1998, 17(1): 1-16.

[16]

Malanda LM, Park C, Balatinecz J Production of Microcellular Foamed PVC/Wood Fiber Composites: Processing and Cell Morphology Relationship[J]. J. Cell. Plast., 1996, 32: 449-469.

[17]

Hall M, Kumar V, Ma M, Kwapisz RIn The Effect of Additives on PVC Solid State Microcellular Foams[J]. Society of plastics engineers Inc, 1996 1 908-1 913.

[18]

Holl M, Kumar V, Garbini J, Murray W Cell Nucleation in Solid-State Polymeric Foams: Evidence of A Triaxial Tensile Failure Mmechanism[J]. J. Mater. Sci., 1999, 34(3): 637-644.

[19]

Goel SK, Beckman EJ Generation of Microcellular Ppolymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on Nucleation[J]. Polym. Eng. Sci., 1994, 34(14): 1 137-1 147.

[20]

Goel SK, Beckman EJ Nucleation and Growth in Microcellular Materials: Supercritical CO2 as Foaming Agent [J]. AIChE, 1995, 41(2): 357-367.

[21]

Doroudiani S, Park C, Kortschot M, Cheung L Effect of Morphology on Microcellular Foaming of Semi-Crystalline Polymers[J]. SPE Antec., 1995, 2: 2 183-2 188.

[22]

Doroudiani S, Park CB, Kortschot MT Effect of the Crystallinity and Morphology on the Microcellular Foam Structure of Semicrystalline Polymers[J]. Polym. Eng. Sci., 1996, 36(21): 2 645-2 662.

[23]

Kumar V, Stolarczuk PJ Microcellular PET Foam Produced by the Solid State Process[J]. SPE. Antec., 1996 1 894-1 899.

[24]

Kumar V, Eddy S, Murray RIn Solid-State PETG Foams[J]. Society of plastics engineers Inc, 1996 1 920-1 925.

[25]

Martini J, Waldman F, Suh NP The Production and Analysis of Microcellular Thermoplastic Foam[J]. SPE. Antec., 1982, 28: 674-676.

[26]

Liang MT, Wang CM Production of Engineering Plastics Foams by Supercritical CO2[J]. Ind. Eng. Chem. Res., 2000, 39(12): 4 622-4 626.

[27]

Gendron R, Daigneault LE Continuous Extrusion of Microcellular Polycarbonate[J]. Polym. Eng. Sci., 2003, 43(7): 1 361-1 377.

[28]

Park CB, Behravesh AH, Venter RD Low Density Microcellular Foam Processing in Extrusion Using CO2[J]. Polym. Eng. Sci., 1998, 38(11): 1812-1 823.

[29]

Park CB, Suh NP Filamentary Extrusion of Microcellular Polymers Using A Rapid Decompressive Element[J]. Polym. Eng. Sci., 1996, 36(1): 34-48.

[30]

Park CB, Baldwin DF, Suh NP Effect of the Ppressure Drop Rate on Cell Nucleation in Continuous Processing of Microcellular Polymers[J]. Polym. Eng. Sci., 1995, 35(5): 432-440.

[31]

Xu X, Park C B, Xu D, Pop-Iliev R Effects of Die Geometry on Cell Nucleation of PS Foams Blown with CO2[J]. Polym. Eng. Sci., 2003, 43(7): 1 378-1 390.

[32]

Xu J Methods for Manufacturing Foam Material Including Systems with Pressure Restriction Element [P], 2001

[33]

Guan R, Wang BQ, Lu DP Preparation of Microcellular Poly (Ethylene Terephthalate) and Its Properties[J]. J. Appl. Polym. Sci., 2003, 88(8): 1 956-1 962.

[34]

Guan R, Wang BQ, Lu DP, Fang Q, Xiang BL Microcellular Thin PET Sheet Foam Preparation by Compression Molding[J]. J. Appl. Polym. Sci., 2004, 93(4): 1 698-1 704.

[35]

Guan R, Xiang BL, Xiao ZX, Li L, Lu DP, Song GW The Processing-Structure Relationships in Thin Microcellular PET Sheet Prepared by Compression Molding[J]. Eur. Polym. J., 2006, 42(5): 1 022-1 032.

[36]

Arora KA, Lesser AJ, McCarthy TJ Preparation and Characterization of Microcellular Polystyrene Foams Processed in Supercritical Carbon Dioxide[J]. Macromolecules, 1998, 31(14): 4 614-4 620.

[37]

Goel SK, Beckman EJ Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on Nucleation[J]. Polym. Eng. Sci., 1994, 34(14): 1 137-1 147.

[38]

Goel SK, Beckman EJ Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. II: Cell Growth and Skin Formation[J]. Polym. Eng. Sci., 1994, 34(14): 1 148-1 156.

[39]

Liang MT, Wang CM Production of Engineering Plastics Foams by Supercritical CO2[J]. Ind. Eng. Chem. Res., 2000, 39(12): 4 622-4 626.

[40]

Kumar V, Weller J Production of Microcellular Polycarbonate Using Carbon Dioxide for Bubble Nucleation[J]. Journal of engineering for industry, 1994, 116(4): 413-420.

[41]

Blednykh E, Skripov V Gas Bubble Nucleation in Glassy Poly (Methyl Methacrylate) and Polycarbonate[J]. Colloid Journal of the Russian Academy of Sciences, 1996, 58(1): 15-20.

[42]

Okamoto M, Nam PH, Maiti P, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H Biaxial Flow-Induced Alignment of Silicate Layers in Polypropylene/Clay Nanocomposite Foam[J]. Nano. Lett., 2001, 1(9): 503-505.

[43]

Nam P H, Maiti P, Okamoto M, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H Foam Processing and Cellular Structure of Polypropylene/clay Nanocomposites[J]. Polym. Eng. Sci., 2002, 42(9): 1 907-1 918.

[44]

Mitsunaga M, Ito Y, Ray S S, Okamoto M, Hironaka K Intercalated Polycarbonate/Clay Nanocomposites: Nanostructure Control and Foam Processing[J]. Macromol. Mater. Eng., 2003, 288(7): 543-548.

[45]

Ito Y, Yamashita M, Okamoto M Foam Processing and Cellular Structure of Polycarbonate-Based Nanocomposites[J]. Macromol. Mater. Eng., 2006, 291(7): 773-783.

[46]

Bair H, Warren P Morphology of Lightly Plasticized PVC[J]. Journal of Macromolecular Science, Part B, 1981, 20(3): 381-402.

[47]

Beirnes KJ, Burns CM Thermal Analysis of the Glass Transition of Plasticized Poly (Vinyl Chloride) [J]. J. Appl. Polym. Sci., 1986, 31(8): 2 561-2 567.

[48]

Ceccorulli G, Pizzoli M, Scandola M Composition Dependence of the Glass Transition Temperature of Polymer-Diluent Systems: 1. Experimental Evidence of a Dual Behavior in Plasticized PVC[J]. Polymer, 1987, 28(12): 2 077-2 080.

[49]

Fried J, Lai SY, Kleiner L, Wheeler M Experimental Assessment of the Thermodynamic Theory of the Compositional Variation of Tg: PVC Systems[J]. J. Appl. Polym. Sci., 1982, 27(8): 2 869-2 883.

[50]

Mauritz K, Storey R, George S A General Free Volume Based Theory for the Diffusion of Large Molecules in Amorphous Polymers above T g. I, Application to Di-n-alkyl Phthalates in PVC[J]. Macromolecules, 1990, 23(2): 441-450.

[51]

Mauritz K, Storey R, Wilson B Efficiency of Plasticization of PVC by Higher-Order Di-Alkyl Phthalates and Survey of Mathematical Models for Prediction of Polymer/Diluent Blend T g’s[J]. Journal of Vinyl Technology, 1990, 12(3): 165-173.

[52]

Scandola M, Ceccorulli G, Pizzoli M, Pezzin G Further Evidence of An Unusual T G-Concentration Dependence for Plasticized Polyvinylchloride[J]. Polym. Bull., 1982, 6(11): 653-660.

[53]

Stales CA, Peterson DR, Parkerton TF, Adams WJ The Environmental Fate of Phthalate Esters: A Literature Review[J]. Chemosphere, 1997, 35(4): 667-749.

[54]

Guan R, Wang BQ, Lu DP Preparation of Microcellular Poly (Ethylene Terephthalate) and Its Properties[J]. J. Appl. Polym. Sci., 2003, 88(8): 1 956-1 962.

[55]

Guan R, Wang BQ, Lu DP, Fang Q, Xiang BL Microcellular Thin PET Sheet Foam Preparation by Compression Molding[J]. J. Appl. Polym. Sci., 2004, 93(4): 1 698-1 704.

[56]

Xiang BL, Guan R, Fang Q, Xiao ZX, Jiang YJ Preparation and Characterization of Microcellular Thin Polycarbonate Sheets[J]. J. Appl. Polym. Sci., 2006, 99(4): 1 760-1 766.

[57]

Guan R, Xiang BL, Xiao ZX, Li YL, Lu DP, Song GW The Processing-Structure Relationships in Thin Microcellular PET Sheet Prepared by Compression Molding[J]. Eur. Polym. J., 2006, 42(5): 1 022-1 032.

[58]

Li YL, Guan R, Xiang BL, Xiao ZX, Jiang YJ, Lu DP Processing-Mechanical Property Relationship of Thin Microcellular PET Sheet Prepared by Compression Molding[J]. Polym-Plast. Technol., 2008, 47(4–6): 524-531.

[59]

Xiao ZX, Guan R, Jiang YJ, Li YL Tensile Property of Thin Microcellular PC Sheets Prepared by Compression Molding[J]. Express. Polym. Lett., 2007, 1: 217-225.

[60]

Kumar V, Van Der Wel M Microcellular Polycarbonate-Part 2: Characterization of Tensile Modulus[J]. SPE. Antec., 1991 1 406-1 410.

[61]

Kumar V, VanderWel M, Weller J, Seeler K A Experimental Characterization of the Tensile Behavior of Microcellular Polycarbonate Foams[J]. J. Eng. Mater. Technol., 1994, 116: 439-445.

[62]

Kumar V, Suh NP A Process for Making Microcellular Thermoplastic Parts[J]. Polym. Eng. Sci., 1990, 30(20): 1 323-1 329.

[63]

Yuan M, Turng LS Microstructure and Mechanical Properties of Microcellular Injection Molded Polyamide-6 Nanocomposites[J]. Polymer, 2005, 46(18): 7 273-7 292.

[64]

Walto AG, Zettlemoyer. Nucleation[M]. New York, Marcel Dekker Inc, 196–200

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/