Effect of solution concentration on the structures and corrosion inhibition behavior of γ-APS films fabricated on surface of low carbon steel

Lixia Yang , Yuxin Zhang , Xiaoli Lei , Mingxing Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 224 -230.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 224 -230. DOI: 10.1007/s11595-013-0669-6
Advanced Materials

Effect of solution concentration on the structures and corrosion inhibition behavior of γ-APS films fabricated on surface of low carbon steel

Author information +
History +
PDF

Abstract

Effect of solution concentration on the structures and corrosion inhibition behavior of γ-APS films fabricated on surface of low carbon steel was systematically studied by EIS, RA-IR, and AFM. The experimental results indicated that the impedance of γ-APS silane treated substrates and the cross-linking degree of γ-APS films gradually increased with the increasing solution concentration. There was some noticeable transformation in molecular orientation and protective performance of γ-APS films when solution concentration was above 10vol%. High cross-linking degree and changes in molecular orientation generated γ-APS films with excellent protective performance and ordered arrangement.

Keywords

γ-APS / concentration / orientation / performance

Cite this article

Download citation ▾
Lixia Yang, Yuxin Zhang, Xiaoli Lei, Mingxing Liu. Effect of solution concentration on the structures and corrosion inhibition behavior of γ-APS films fabricated on surface of low carbon steel. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(2): 224-230 DOI:10.1007/s11595-013-0669-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang LX, Liu MX, Lei XL, . Study on the Adsorption Behavior of γ-GPS on Low Carbon Steel Surfaces Using RA-IR, EIS and AFM[J]. Appl. Surf. Sci., 2011, 257(23): 9 895-9 903.

[2]

Flis J, Kanoza M Electrochemical and Surface Analytical Study of Vinyl-triethoxy Silane Films on Iron after Exposure to Air[J]. Electrochim. Acta, 2006, 51(11): 2 338-2 345.

[3]

Wu LQ, Zhang JT, Hu JM, . Improved Corrosion Performance of Electrophoretic Coatings by Silane Addition[J]. Corros. Sci., 2012, 56: 58-66.

[4]

Yang LX, Feng J, Zhang WG, . Film Forming Kinetics and Reaction Mechanism of γ-glycidoxypropyltrimethoxysilane on Low Carbon Steel Surfaces[J]. Appl. Surf. Sci., 2010, 256(22): 6 787-6 784.

[5]

Boerio FJ, Williams JW Structure and Properties of Organosilane Primers for Adhesive Bonding[J]. Appl. Surf. Sci., 1981, 7(1–2): 19-31.

[6]

Ishida H, Chiang C, Koenig JL The Structure of Aminofunctional Silane Coupling Agents: 1. γ-Aminopropyltriethoxysilane and Its Analogues[J]. Polymer, 1982, 23(2): 251-257.

[7]

Quinton JS, Dastoor PC Conformational Dynamics of γ-APS on the Iron Oxide Surface: An Adsorption Kinetic Study Using XPS and ToFSIMS[J]. Surf. Interface Anal., 2000, 30(1): 21-24.

[8]

Watts B, Thomsen L, Fabien JR Understanding the Conformational Dynamics of Organosilanes: γ-APS on Zinc Oxide Surfaces[J]. Langmuir, 2002, 18(1): 148-154.

[9]

Thomsen L, Watts B, Dastoor PC A NEXAFS Orientation Study of γ-aminopropyltriethoxysilane on Zinc Oxide Surfaces[J]. Surf. Interface Anal., 2006, 38(7): 1 139-1 145.

[10]

Culler SR, Ishida H, Koenig JL Structure of Silane Coupling Agents Adsorbed on Silicon Powder[J]. J. Colloid Interface Sci., 1985, 106(2): 334-346.

[11]

Chico B, Galvan JC, Fuente D d l, . Electrochemical Impedance Spectroscopy Study of the Effect of Curing Time on the Early Barrier Properties of Silane Systems Applied on Steel Substrates[J]. Prog. Org. Coat., 2007, 60(1): 45-53.

[12]

Chen JS, Diard JP, Durand R, . Hydrogen Insertion Reaction with Restricted Diffusion. Part 1. Potential step-EIS Theory and Review for the Direct Insertion Mechanism[J]. J. Electroanal.Chem., 1996, 406(1–2): 1-13.

[13]

van Ooij WJ, Zhu D Electrochemical Impedance Spectroscopy of Bis-[triethoxysilypropyl]tetrasulfide on Al 2024-T3 Substrates[J]. Corrosion, 2001, 57(5): 413-427.

[14]

Kanoza M, Flis-kabulska I, Flis J Effect of Aging in Air and Immersion into Phosphate Solution on Protectiveness and Transformations of Vinyltriethoxy Silane Nanofilms on Iron[J]. Corros. Sci., 2012, 61: 224-230.

[15]

Zucchi F, Frignani A, Grassi V, . The Formation of a Protective Layer of 3-mercapto-propyl-trimethoxy-silane on Copper[J]. Corros. Sci., 2007, 49(3): 1 570-1 583.

[16]

Behzadnasab M, Mirabedini SM, Kabiri K, . Corrosion Performance of Epoxy Coatings Containing Silane Treated ZrO2 Nanoparticles on Mild Steel in 3.5% NaCl Solution[J]. Corros. Sci., 2011, 53(1): 89-98.

[17]

Trabelsi W, Cecilio P, Ferreira MGS, . Electrochemical assessment of the Self-healing Properties of Ce-doped Sianle Solutions for the Pretreatment of Galvanized Steel Substrates[J]. Prog. Org. Coat., 2005, 54: 276-284.

[18]

Trabelsi W, Dhouibi L, Triki E, . An Electrochemical and Analytical Assessment on the Early Corrosion Behaviour of Galvanised Steel Pretreated with Aminosilanes[J]. Surf. Coat. Technol., 2005, 192(2–3): 284-290.

[19]

Trabelsi W, Triki E, Dhouibi L, . The Use of Pre-treatments Based on Doped Silane Solutions for Improved Corrosion Resistance of Galvanised Steel Substrates[J]. Surf. Coat. Technol., 2006, 200(14–15): 4 240-4 250.

[20]

Franquet A, Le Pen C, Terryn H, . Effect of Bath Concentration and Curing Time on the Structure of Non-functional Thin Organosilane Layers on Aluminium[J]. Electrochim. Acta, 2003, 48(9): 1 245-1 255.

[21]

Zhu DQ, van Ooij WJ Corrosion Protection of AA 2024-T3 by Bis-[3-(triethoxysilyl)propyl]tetrasulfide in Sodium Chloride Solution Part 2: Mechanism for Corrosion Protection[J]. Corros. Sci., 2003, 45(10): 2 177-2 197.

[22]

Bonora PL, Deflorian F, Fedrizzi L Electrochemical Impedance Spectroscopy as a Tool for Investigating Underpaint Corrosion[J]. Electrochim. Acta, 1996, 41(7–8): 1 073-1 082.

[23]

Chiang CH, Ishida H, Koenig JL The Structure of Aminopropyltriet hoXysilane on Glass Surface[J]. J.Colloid Interface Sci., 1980, 74(2): 396-404.

[24]

Roche V, Perrin FX, Gigmes D, . Tracking the Fate of Gammaaminopropyltriethoxysilane from the Sol State to the Dried Film State[J]. Thin Solid Films, 2010, 518(14): 3 640-3 645.

[25]

Yuan W, van Ooij WJ Characterization of Organofunctional Silane Films on Zinc Substrates[J]. J.Colloid Interface Sci., 1997, 185(1): 197-209.

[26]

Kurth DG, Bein T Thin-films of (3-aminopropyl)triethoxysilane on Aluminum-oxide and Gold Substrates[J]. Langmuir, 1995, 11(8): 3 061-3 067.

[27]

Quinton JS, Dastoor PC Modelling the Observed Oscillations in the Adsorption Kinetics of Propyltrimethoxysilane on Iron and Aluminium Oxide Surfaces[J]. Surf. Interface Anal., 2000, 30(1): 25-28.

[28]

Quinton JS, Dastoor PC Adsorption of Organosilanes on Iron and Aluminium Oxide Surfaces[J]. Surf. Interface Anal., 1997, 25(12): 931-936.

[29]

Moreno EM, Zayat M, Morales MP, . Preparation of Narrow Size Distribution Superparamagnetic γ-Fe2O3 Nanoparticles in a Sol-gel Transparent SiO2 Matrix[J]. Langmuir, 2002, 18(12): 4 972-4 978.

[30]

Huang XH, Chen ZH Preparation and Characterization of CoFe2O4/SiO2 Nanocomposites[J]. Chin. Sci. Bull., 2006, 51(20): 2 529-2 534.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/