Synthesis and characterization of W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene by a hydrothermal method

Xiaoliang Shi , Zhiwei Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 207 -214.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (2) : 207 -214. DOI: 10.1007/s11595-013-0666-9
Advanced Materials

Synthesis and characterization of W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene by a hydrothermal method

Author information +
History +
PDF

Abstract

W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene was synthesized by a simple hydrothermal method. The material displayed high visible light photocatalytic activity. X-ray diffraction, field emission transmission electron microscopy, ultra violet/visible light absorption and photoluminescence spectroscopy were used to characterize the material as photocatalyst. Photocatalytic activity on the degradation of Rhodamine B dye in an aqueous solution under ultraviolet light and visible light irradiation was also studied. The experimental results indicated that the photocatalytic activity of the material was much higher than that of pure TiO2 or Degussa P25 TiO2.

Keywords

W-doped TiO2 / hybrid carbon nanomaterials / multi-walled carbon nanotubes / C60 fullerene / photocatalytic activity

Cite this article

Download citation ▾
Xiaoliang Shi, Zhiwei Zhu. Synthesis and characterization of W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene by a hydrothermal method. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(2): 207-214 DOI:10.1007/s11595-013-0666-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu JG, Xiong JF, Pei C Low-temperature Hydrothermal Synthesis of TiO2 Photocatalyst with High Activity[J]. Chin. J. Catal., 2005, 26(9): 745-749.

[2]

Zhang Q, Wang LY, Li XJ, . Preparation of TiO2 Film with Visiblelight Activity and Photocatalytic Properties[J]. J. Funct. Mater. Devices., 2002, 8(4): 397-401.

[3]

Peng SQ, Jiang FY, Li YX Preparation of N-doped TiO2 Photocatalyst and Degradation of Formaldehyhyde under Visible Light [J]. J. Funct. Mater., 2005, 36(8): 1 207-1 209.

[4]

Claudio DD, Phani AR, Santuccia S Enhanced Optical Properties of Sol-gel Derived TiO2 Films Uaing Microwave Irradiation[J]. Opt. Mater., 2007, 30(2): 279-284.

[5]

Datta A, Priyam A, Bhattacharyya SN, . Temperature Tunability of Size in CdS Nanoparticles and Size Dependent Photocatalytic Degradation of Nitroaromatics[J]. J. Colloid Interface Sci., 2008, 322(1): 128-135.

[6]

Cheng P, Deng CS, Gu MY, . Effect of Urea on the Photoactivity of Titania Powder Prepared by Sol-gel Method[J]. Mater. Chem. Phys., 2008, 107(1): 77-81.

[7]

Becker WG, Truong MM, Ai CC, . Interfacial Factors that Affect the Photoefficiency of Semiconductor-sensitized Oxidations in Nonaqueous media [J]. J. Phys. Chem., 1989, 93(12): 4 882-4 886.

[8]

Kutty TRN, Avudaithai M Photocatalytic Activity of Tin-substituted TiO2 in Visible Light[J]. Chem. Phys. Lett., 1989, 163(1): 93-97.

[9]

Vaidyanathan S, Eduardo EW, Prashant VK Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles [J]. Langmuir, 2003, 19(2): 469-474.

[10]

Ryu JH, Park DS, Hahn BD, . Photocatalytic TiO2 Thin Films by Aerosol-deposition: From Micron-sized Particles to Nano-grained Thin Film at Room Temperature. Appl. Catal. B, 2008, 83(1–2): 1-7.

[11]

Gopidas KR, Bohorquez M, Kamat PV Photophysical and Photochemical Aspects of Coupled Semiconductors: Charge-transfer Processes in Colloidal Cadmium Sulfide-titania and Cadmium Sulfide-silver (I) Iodide Systems [J]. J. Phys. Chem., 1990, 94(16): 6 435-6 440.

[12]

Tian H, Ma JF, Li K, . Photocatalytic Degradation of Methyl Orange with W-doped TiO2 Synthesized by a Hydrothermal Method [J]. Mater. Chem. Phys., 2008, 112(1): 47-51.

[13]

Baskaran D, Mays JW, Bratcher MS Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes [J]. Chem. Mater., 2005, 17(13): 3 389-3 397.

[14]

Ge JJ, Zhang D, Li Q, . Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides [J]. J. Am. Chem. Soc., 2005, 127(28): 9 984-9 985.

[15]

Fugetsu B, Satoh S, Shiba T, . Caged Multiwalled Carbon Nanotubes as the Adsorbents for Affinity-Based Elimination of Ionic Dyes [J]. Environ. Sci. Technol., 2004, 38(24): 6 890-6 896.

[16]

Chu DB, Zhang LY, Zhang JH, . Heterogeneous Electrocatalytic Reduction of Furfural on Nanocrystalline TiO2-CNT Complex Film Electrode in DMF Solution[J]. Acta Phys. Chim. Sin., 2006, 22(3): 373-377.

[17]

Li WZ, Liang CH, Qiu JS, . Multi-walled Carbon Nanotubes Supported Pt-Fe Cathodic Catalyst for Direct Methanol Fuel Cell [J]. React. Kinet. Catal. Lett., 2004, 82(2): 235-240.

[18]

Salveat-Delmontte JP, Rubio A Mechanical Properties of Carbon Nanotubes: A Fiber Digest for Beginners[J]. Carbon, 2000, 40(10): 1 729-1 734.

[19]

Saito T, Matsushige K, Tanaka K Chemical Treatment and Modification of Multi-walled Carbon Nanotubes[J]. Physica B, 2002, 323(1–4): 280-283.

[20]

Wang F, Wang Q, Hu YC, . Study on Fabrication, Characterization and Photocatalytic Properties of Loaded Nanometer TiO2[J]. Rare Metal Mat. Eng., 2005, 34(3): 641-643.

[21]

Wu YC, Song LY, Liu XL, . Preparation and Characterization of Carbon Nanotubes-TiO2 Nanocomposites [J]. J. Funct. Mater., 2008, 39(3): 497-498.

[22]

Bie WW, Cong Y, Dong ZJ, . Synthesis and Characterization of TiO2-MWCNT Composites [J]. J. Wuhan. Univ. Sci. Technol. Mater. Sci. Ed., 2010, 33(4): 398-401.

[23]

Schuster DI, MacMahon S, Guldi DM, . Synthesis and Photophysics of Porphyrin-fullerene Donor-acceptor Dyads with Conformationally Flexible Linkers[J]. Tetrahedron, 2006, 62(9): 1 928-1 936.

[24]

Guldi DM, Maggini M, Martin N, . Charge Separation in Fullerene Containing Donor-bridge-acceptor Molecules[J]. Carbon, 2000, 38(11–12): 1 615-1 623.

[25]

Krishna V, Noguchi N, Koopman B, . Enhancement of Titanium Dioxide Photocatalysis by Water-soluble Fullerenes [J]. J. Colloid Interf. Sci., 2006, 304(1): 166-171.

[26]

Delgado JL, Cruz PDL, Urbina A, . The First Synthesis of A Conjugated Hybrid of C60-fullerene and a Single-wall Carbon Nanotube[J]. Carbon, 2007, 45(11): 2 250-2 252.

[27]

Wei W, Zhang C, Du ZJ, . Synthesis and Characterization of MWCNTs/fullerene Hybrid [J]. J. Mater. Sci. Engin., 2009, 27(2): 216-218.

[28]

Lin J, Zong RL, Zhou M, . Photoelectric Catalytic Degradation of Methylene Blue by C60-modified TiO2 Nanotube Array[J]. Appl. Catal. B, 2009, 89(3–4): 425-431.

[29]

Shi XL, Wang S, Dong XB, . Enhanced Photocatalytic Activity of Titanium Dioxide by Nut Shell Carbon[J]. J. Hazard. Mater., 2009, 167(1–3): 692-695.

[30]

Guan LH, Suenaga K, Okazaki T, . Coalescence of C60 Molecules Assisted by Doped Iodine Inside Carbon Nanotubes [J]. J. Am. Chem. Soc., 2007, 129(29): 8 954-8 955.

[31]

Yang Y, Wang HY, Li X, . Electrospun Mesoporous W6+-doped TiO2 Thin Films for Efficient Visible-light Photocatalysis[J]. Mater. Lett., 2009, 63(2): 331-333.

[32]

Luo YS, Liu JP, Xia XH, . Fabrication and Characterization of TiO2/Short MWCNTs with Enhanced Photocatalytic Activity [J]. Mater. Lett., 2007, 61(11–12): 2 467-2 472.

[33]

Okada S, Saito S, Oshiyama A Energetics and Electronic Structures of Encapsulated C60 in a Carbon Nanotube[J]. Phys. Rev. Lett., 2001, 86(17): 3 835-3 838.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/