Alumina recovery from kaolin with mineral impurities

Peng Si , Xiuchen Qiao , Jianguo Yu

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (6) : 1139 -1143.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (6) : 1139 -1143. DOI: 10.1007/s11595-012-0618-9
Article

Alumina recovery from kaolin with mineral impurities

Author information +
History +
PDF

Abstract

The alumina recovery from low grade kaolin (K-JS) treated through thermal and mechanical methods was investigated. High grade kaolin (K-SX) was used as comparison. The optimum calcination temperatures for K-JS and K-SX were both 600 °C, which resulted in 89.34wt% of alumina extraction from K-JS and 83.37wt% from K-SX. With the increase in calcination temperature, the chemical reactivity of calcined K-JS and K-SX to acid decreased. Mechanical treatment was much more effective in increasing the alumina extraction from activated kaolin. Around 99wt% of alumina was extracted from K-JS ground for 10 hours and 95wt% of alumina was extracted from K-SX ground for 20 hours. The IR results showed that the substitute of Al for Si occurred in calcined K-SX, however, the impurities in K-JS decreased this substitute. More alumina could be extracted from low grade kaolin than that from high grade kaolin under identical thermal or mechanical conditions.

Keywords

kaolin / alumina / calcination / milling / acid extraction

Cite this article

Download citation ▾
Peng Si, Xiuchen Qiao, Jianguo Yu. Alumina recovery from kaolin with mineral impurities. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(6): 1139-1143 DOI:10.1007/s11595-012-0618-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang B.K., Ding H., Deng Y.X. Characterization of Calcined Kaolin/TiO2 Composite Particle Material Prepared by Mechanochemical Method [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2010, 25(5): 765-769.

[2]

Zeng J.J., Shui Z.H., Wang M.M. The Early Hydration And Strength Development of High-strength Precast Concrete with Cement/Metakaolin Systems [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2010, 25(4): 712-716.

[3]

Guareschi P. Alumina from Low-grade Ores[P]. US Patent, A, 2833707. 1958-May-06

[4]

Sutyrin Y.E. Recovery of Alumina from Low-quality Ores [J]. Dokl. Akad. Nauk SSSR, 1981, 256(4): 920-922.

[5]

Meor-Yusoff M.S., Masilana M., Choo T.F., . Production of High Purity Alumina and Zeolite from Low-grade Kaolin [J]. Adv. Mater. Res., 2007, 29–30: 187-190.

[6]

Bazin C., El-Ouassiti K., Ouellet V. Sequential Leaching for the Recovery of Alumina from a Canadian Clay[J]. Hydrometallurgy, 2007, 88(1–4): 196-201.

[7]

Kang H.K., Kim K.H., Park H.C. Preparation of Fe-free Alumina Powder from Kaolin [J]. J. Mater. Sci. Lett., 1995, 14(6): 425-427.

[8]

Yang H.M., Liu M.Z., Ouyang J. Novel Synthesis and Characterization of Nanosized γ-Al2O3 from Kaolin[J]. Appl. Clay Sci., 2010, 47(3–4): 438-443.

[9]

Qiao X.C., Si P., Yu J. G. A Systematic Investigation into the Extraction of Aluminum from Coal Spoil through Kaolinite[J]. Environ. Sci. Technol., 2008, 42(22): 8 541-8 546.

[10]

Tang A.D., Su L.N., Li C.C., . Effect of Mechanical Activation on Acid-Leaching of Kaolin Residue[J]. Appl. Clay Sci., 2010, 48(3): 296-299.

[11]

Kakali G., Perraki T., Tsivilis S., . Thermal Treatment of Kaolin: The Effect of Mineralogy on the Pozzolanic Activity[J]. Appl. Clay Sci., 2001, 20(1–2): 73-80.

[12]

Garcia F.G., Abrio M.T.R., Rodriguez M.G. Effects of Dry Grinding on Two Kaolins of Different Degrees of Crystallinity[J]. Clay Miner., 1991, 26(4): 549-565.

[13]

Sánchez-Soto P.J., de Haro M.C.J., Pérez-Maqueda L.A., . Effects of Dry Grinding on the Structural Changes of Kaolinite Powders[J]. J. Am. Ceram. Soc., 2000, 83(7): 1 649-1 657.

[14]

Vizcayno C., Castelló R., Ranz I., . Some Physico-Chemical Alterations Caused by Mechanochemical Treatments in Kaolinites of Different Structural Order[J]. Thermochim. Acta, 2005, 428(1–2): 173-183.

[15]

Balan E., Marco Saitta A., Mauri F., . First-principles Modeling of the Infrared Spectrum of Kaolinite[J]. Am. Mineralogist, 2001, 86(11–12): 1 321-1 330.

[16]

Bougeard D., Smirnov K.S., Geidel E. Vibrational Spectra and Structure of Kaolinite: A Computer Simulation Study[J]. J. Phys. Chem. B, 2000, 104(39): 9 210-9 217.

[17]

Percival H.J., Duncan F., Foster P.K. Interpretation of the Kaolinite-Mullite Reaction Sequence from Infrared Absorption Spectra[J]. J. Am. Ceram. Soc., 1974, 57(2): 57-61.

[18]

Mendelovici E. Comparative Study of the Effect of Thermal and Mechanical Treatments on the Structures of Clay Minerals[J]. J. Therm. Anal., 1997, 49(3): 1 385-1 397.

[19]

Makó Frost R.L., Kristóf J., . The Effect of Quartz Content on the Mechanochemical Activation of Kaolinite[J]. J. Colloid Interface Sci., 2001, 244(2): 359-364.

[20]

Breen C., Illés J., Yarwood J., . Variable Temperature Diffuse Reflectance Infrared Fourier Transform Spectroscopic Investigation of the Effect of Ball Milling on the Water Sorbed to Kaolin [J]. Vib. Spectrosc., 2007, 43(2): 366-379.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/