Effect of additives on the morphologies of cuprous oxides by electrodeposition

Xianyong Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (6) : 1096 -1099.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (6) : 1096 -1099. DOI: 10.1007/s11595-012-0608-y
Article

Effect of additives on the morphologies of cuprous oxides by electrodeposition

Author information +
History +
PDF

Abstract

Cuprous oxides with different morphologies were formed on F-doped tin oxide (FTO) covered glass substrates by potentiostatic deposition of cupric acetate. The effects of CTAB and Cl on the crystal morphologies of cuprous oxide were studied. Different crystal morphologies of cuprous oxides were obtained by the change of the concentrations of CTAB and Cl. The flowerlike and cubic morphologies of Cu2O crystals were obtained when using higher concentration of CTAB and KCl, respectively. Photoelectrochemical properties of the Cu2O thin films prepared in the system were also studied.

Keywords

crystal morphology / electrochemical growth / thin film / cuprous oxide

Cite this article

Download citation ▾
Xianyong Zhu. Effect of additives on the morphologies of cuprous oxides by electrodeposition. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(6): 1096-1099 DOI:10.1007/s11595-012-0608-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang H., Ouyang J., Tang A., . Electrochemical Synthesis and Photocatalytic Property of Cuprous Oxide Nanoparticles[J]. Mater. Res. Bull., 2006, 41(7): 1 310-1 318.

[2]

Ramirez-Ortiz J., Ogura T., Medina-Valtierra J., . A Catalytic Application of Cu2O and CuO Films Deposited over Fiberglass[J]. Appl. Surf. Sci., 2001, 174(3–4): 177-184.

[3]

Shishiyanu S.T., Shishiyanu T.S., Lupan O.I. Novel NO2 Gas Sensor Bas-ed on Cuprous Oxide Thin Films[J]. Sensors Actuators B, 2006, 113(1): 468-476.

[4]

Rakhshani A.E. Preparation, Characteristics and Photovoltaic Properties of Cuprous Oxide-A Review[J]. Solid-State Electron., 1986, 29(1): 7-17.

[5]

Akimoto K., Ishizuka S., Yanagita M., . Thin Film Deposition of Cu2O and Application for Solar Cells[J]. Sol. Energy, 2006, 80(6): 715-722.

[6]

Musa A.O., Akomolafe T., Carter M.J. Production of Cuprous Oxide, a Solar Cell Material, by Thermal Oxidation and a Study of Its Physical and Electrical Properties[J]. Sol. Energy Mater. Sol. Cells, 1998, 51(3–4): 305-316.

[7]

Izaki M., Shinagawa T., Mizuno K.T., . Electrochemically Constructed p-Cu2O/n-ZnO Heterojunction Diode for Photovoltaic Device[J]. J. Phys. D: Appl. Phys., 2007, 40(11): 3 326-3 329.

[8]

Hara M., Kondo T., Komoda M., . Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation[J]. Chem. Commun., 1998, 29(3): 357-358.

[9]

de Jongh PE, Vanmaekelbergh D, Kelly JJ. Cu2O: a Catalyst for the Photochemical Decomposition of Water[J]? Chem. Commun., 1999, (12): 1 069–1 070

[10]

Nian J.N., Hu C.C., Teng H. Electrodeposited p-type Cu2O for H2 Evolution from Photoelectrolysis of Water under Visible Light Illumination[J]. Int. J. Hydrogen Energy, 2008, 33(12): 2 897-2 903.

[11]

Yu J.G., Yu X.X. Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres[J]. Environ. Sci. Technol., 2008, 42(13): 4 902-4 907.

[12]

Zhu W, Feng X, Feng L, et al. UV-Manipulated Wettability between Superhydrophobicity and Superhydrophilicity on a Transparent and Conductive SnO2 Nanorod Film[J]. Chem. Commun., 2006, (26): 2 753–2 755

[13]

Xia Y.N., Yang P.D., Sun Y.G., . One-dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv. Mater., 2003, 15(5): 353-389.

[14]

Luo F., Wu D., Gao L., . Shape-controlled Synthesis of Cu2O Nanocrystals Assisted by Triton X-100[J]. J. Crystal Growth, 2005, 285(4): 534-540.

[15]

Xu H.L., Wang W.Z., Zhu W. Shape Evolution and Size-controllable Synthesis of Cu2O Octahedra and their Morphology-dependent Photocatalytic Properties[J]. J. Phys. Chem. B, 2006, 110(28): 13 829-13 834.

[16]

Huang L., Wang H., Wang Z., . Cuprite Nanowires by Electrodeposition from Lyotropic Reverse Hexagonal Liquid Crystalline Phase[J]. Chem. Mater., 2002, 14(2): 876-880.

[17]

Luo H., Zhang J., Yan Y. Electrochemical Deposition of Mesoporous Crystalline Oxide Semiconductor Films from Lyotropic Liquid Crystalline Phases[J]. Chem. Mater., 2003, 15(20): 3 769-3 773.

[18]

Switzer J.A., Hung C.J., Huang L.Y., . Electrochemical Self-assembly of Copper/Cuprous Oxide Layered Nanostructures[J]. J. Am. Chem. Soc., 1998, 120(14): 3 530-3 531.

[19]

Reddy A.S., Rao G.V., Uthanna S., . Structural and Optical Studies on dc Reactive Magnetron Sputtered Cu2O Films[J]. Mater. Lett., 2006, 60(13–14): 1 617-1 621.

[20]

Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions[M], 1974 Houston National Association of Corrosion Engineers 384

[21]

Brady R.M., Ball R.C. Fractal Growth of Copper Electrodeposits[J]. Nature, 1984, 309: 225-229.

[22]

McShane C.M., Choi K.S. Photocurrent Enhancement of n-Type Cu2O Electrodes Achieved by Controlling Dendritic Branching Growth. J. Am. Chem. Soc., 2009, 131: 2 561

[23]

Sun F., Guo Y. P., Song W. B., . Morphological Control of Cu2O Micro-nanostructure Film by Electrodeposition[J]. J. Crystal Growth, 2007, 304: 425

[24]

Siegfried M.J., Choi K.S. Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution[J]. Adv. Mater., 2004, 16: 1 743

[25]

Siegfried M.J., Choi K.S. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-grown Crystals[J]. J. Am.Chem.Soc., 2006, 131(7): 2 561-2 569.

[26]

Garuthara R., Siripala W. Photoluminescence Characterization of Polycrystalline n-type Cu2O Films[J]. J. Lumin., 2006, 121(1): 173-178.

[27]

Fernando C.A.N., Bandara T.M.W.J., Wethasingha S.K. H2 Evolution from a Photoelectrochemical Cell with n-Cu2O Photoelectrode under Visible Light Irradiation[J]. Sol. Energy Mater. Sol. Cells, 2001, 70(2): 121-129.

[28]

Wang L., Tao M. Fabrication and Characterization of p-n Homojunctions in Cuprous Oxide by Electrochemical Deposition[J]. Electrochem. Solid-State Lett., 2007, 10(9): H248-H250.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/