Superplastic behavior of reciprocating extruded Mg-6Zn-1Y-0.6Ce-0.6Zr from rapidly solidified ribbons

Xuefeng Guo , Wenpeng Yang , Fang Ren

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (6) : 1033 -1037.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (6) : 1033 -1037. DOI: 10.1007/s11595-012-0595-z
Article

Superplastic behavior of reciprocating extruded Mg-6Zn-1Y-0.6Ce-0.6Zr from rapidly solidified ribbons

Author information +
History +
PDF

Abstract

RRE-Mg66 alloy with a composition of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6Zr was prepared by combinatorial processes of rapid solidification, reciprocating extrusion and extrusion. Microstructure was evaluated on SEM and TEM. The average grain size of the alloy is 0.7 μm, the size of the second phase at grain boundary is 0.15 μm, and the size of the intragranular precipitates in round shape is less than 20 nm. Superplastic behavior of the material was investigated in a temperature range of 150 to 250 °C and initial strain rate range of 3.3×10−4 to 3.3×10−2 s−1 in air. The highest elongation of 270% was obtained at 250 °C and 3.3× 10−3 s−1. High-strain-rate superplasticity and low-temperature superplasticity were achieved. The superplasticity results from intragranular sliding (IGS) at temperatures from 170 to < 200 °C and grain boundaries sliding (GBS) at 250 °C. At 200 °C a combination of IGS and GBS contributes to the superplastic flow.

Keywords

rapid solidification / reciprocating extrusion / extrusion / superplasticity

Cite this article

Download citation ▾
Xuefeng Guo, Wenpeng Yang, Fang Ren. Superplastic behavior of reciprocating extruded Mg-6Zn-1Y-0.6Ce-0.6Zr from rapidly solidified ribbons. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(6): 1033-1037 DOI:10.1007/s11595-012-0595-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Friedrich H., Schumann S. Research for a “New Age of Magnesium” in the Automotive Industry[J]. J. Mater. Proc. Tech., 2001, 117(23): 276

[2]

Duff L. Magnesium alloys: The Light Choice for Aerospace [J]. Mater. world, 1996, 4(3): 127

[3]

Aghion E., Bronfin B., Eliezer D. The Role of the Magnesium Industry in Protecting the Environment [J]. J. Mater. Proc. Tech., 2001, 117(3): 381

[4]

Bae D.H., Kim S.H., Kim D.H., . Deformation Behavior of Mg-Zn-Y Alloys Reinforced by Icosahedral Quasicrystalline Particles [J]. Acta Mater., 2002, 50(9): 2 343

[5]

Polmear I.J. Recent Developments in Light Alloys [J]. Mater. Tran.-JIM, 1996, 37(2): 12

[6]

Avedesian MM, Baker H. Magnesium and Magnesium Alloys [M]. ASM International, 1999

[7]

Horita Z., Matsubara K., Markii K., . A Two-step Processing Route for Achieving a Superplastic Forming Capability in Dilute Magnesium Alloys [J]. Scripta Mater., 2002, 47(4): 255

[8]

Langdon T.G. Mechanical Properties of Superplastic Materials[J]. Metall. Tran. A, 1982, 13A(5): 689

[9]

Lin H.K., Huang J.C., Langdon T.G. Relationship Between Texture and Low Temperature Superplasticity in an Extruded AZ31 Mg Alloy Processed by ECAP [J]. Mater. Sci. Eng. A, 2005, 402(1–2): 250

[10]

Watanabe H., Mukai T., Ishikawa K., . Realization of High-strainrate Superplasticity at Low Temperatures in a Mg-Zn-Zr Alloy[J]. Mater. Sci. Eng. A, 2001, 307(1–2): 119

[11]

Matsubara K., Miyahara Y., Horita Z., . Developing Superplasticity in a Magnesium Alloy Through a Combination of Extrusion and ECAP [J]. Acta Mater., 2003, 51(11): 3 073

[12]

Guo X., Shechtman D. Reciprocating Extrusion of Rapidly Solidified Mg-6ZN-1Y-0.6Ce-0.6Zr Alloy[J]. J. Mater. Proc. Tech., 2007, 187–188: 640

[13]

Mishra R.S., Bieler T.R., Mukherjee A.K. Superplasticity in Powder Metallurgy Aluminum Alloys and Composites[J]. Acta metal. Mater., 1995, 43(3): 877

[14]

Zhang P., Wendt J., Supik V., . John W., Sons I., . Superplasticity in Hot-rolled Magnesium Alloy AZ31 Sheets [A]. Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications[C], 2004 Weinheim, Germany Wiley-Vch 248

[15]

Lee C.J., Huang J.C. Cavitation Vharacteristics in AZ31 Mg Alloys During LTSP or HSRSP [J]. Acta Mater., 2004, 52(10): 3 111

[16]

Bae D.H., Ghosh A.K. Grain Size and Temperature Dependence of Superplastic Deformation in an Al-Mg Alloy under Isostructural Condition [J]. Acta Mater., 2000, 48(6): 1 207

[17]

Frost HJ, Ashby MF. Deformation-Mechanism Maps for Metals and Alloys [J]. Pergamon, Oxford, 1981:44

[18]

Watanabe H., Tsutsui H., Mukai T., . Deformation Mechanism in a Coarse-grained Mg-Al-Zn Alloy at Elevated Temperatures [J]. Int. J. Plas., 2001, 17(3): 387

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/