The influence of Ce(NO3)3·6H2O on the inhibitive effect of Ca(NO2)2 in simulated concrete pore solution

Xingguo Feng , Yuming Tang , Xuhui Zhao , Yu Zuo

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 994 -998.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 994 -998. DOI: 10.1007/s11595-012-0587-2
Article

The influence of Ce(NO3)3·6H2O on the inhibitive effect of Ca(NO2)2 in simulated concrete pore solution

Author information +
History +
PDF

Abstract

The effects of cerium nitrite on corrosion behaviors of carbon steel in simulated concrete pore solutions were studied with the methods of linear polarization, electrochemical impedance spectroscopy and surface analysis. In pore solutions in the presence of Ce(NO3)3·6H2O, the corrosion potential, polarization resistance and impedance of carbon steel obviously increased in contrast to the situation in the absence of cerium salts. The pore solution with [NO2 ] / [Cl] = 0.3 and 0.1% Ce(NO3)3·6H2O, carbon steel shows better corrosion resistance than that in the pore solution with [NO2 ] / [Cl] = 0.6, which indicates that a small amount of Ce(NO3)3·6H2O in pore solutions can effectively promote passivation of the steel and reduce the threshold [NO2 ] / [Cl] ratio for corrosion control. The surface layer formed in cerium salt containing pore solutions is more compact and smooth and 1.36%Ce is examined on the sample surface. The addition of 0.1% Ce(NO3)3· 6H2O in pore solutions can decrease the corrosion rate of steel in pore solutions and has little influence on pH change of the solutions. However, more cerium nitrate addition above 0.1% may result in pH decrease of the solution.

Keywords

Cerium / Carbon Steel / Electrochemical Impedance Spectroscopy / Corrosion Potential / Corrosion Inhibitor

Cite this article

Download citation ▾
Xingguo Feng, Yuming Tang, Xuhui Zhao, Yu Zuo. The influence of Ce(NO3)3·6H2O on the inhibitive effect of Ca(NO2)2 in simulated concrete pore solution. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 994-998 DOI:10.1007/s11595-012-0587-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ngala V. T., Page C. L., Page M. M. Corrosion Inhibitor Systems for Remedial Treatment of Reinforced Concrete Part 1: Calcium Nitrite [J]. Corros. Sci., 2002, 44(9): 2 073-2 087.

[2]

Ann K. Y., Jung H. S., Kim H. S. Effect of Calcium Nitrite-based Corrosion Inhibitor in Preventing Corrosion of Embedded Steel in Concrete[J]. Cem. Concr. Res., 2006, 36(3): 530-535.

[3]

Montes P., Theodore W. Influence of Calcium Nitrite Inhibitor and Crack Width on Corrosion of Steel in High Performance Concrete Subjected to a Simulated Marine Environment[J]. Cem. Concr. Compos., 2004, 26(3): 243-253.

[4]

Berke S. N., Hicks M. C. Predicting Long-term Durability of Steel Reinforced Concrete with Calcium Nitrite Corrosion Inhibitor[J]. Cem. Concr. Compos., 2004, 26(3): 191-198.

[5]

ACI Committee 212. Chemical Admixtures for Concrete[J]. ACI Mater., 1989, 86(3): 297-327.

[6]

Soylev A., Richardson M. G. Corrosion Inhibitors for Steel in Concrete: State-of-the-art Report [J]. Constr. Build. Mater., 2008, 22(4): 609-622.

[7]

Rosero-Navarro N. C., Pellice S. A., Duran A. Effects of Ce-containing Sol-gel Coatings Reinforced with SiO2 Nanoparticles on the Protection of AA2024[J]. Corros. Sci., 2008, 50(5): 1 283-1 291.

[8]

Arurault L., Monsang P., Salley J., . Electrochemical Preparation of Adherent Ceria Coatings on Ferritic Stainless Steel[J]. Thin Solid Films., 2004, 466(1): 75-80.

[9]

Wang C., Jiang F., Wang F. The Characterization and Corrosion Resistance of Cerium Chemical Conversion Coatings for 304 Stainless Steel[J]. Corros. Sci., 2004, 46(1): 75-89.

[10]

Hosseini M., Sorkhabi H. A. Corrosion Protection of Electro-Galvanized Steel by Green Conversion Coatings[J]. J. Rare. Earth, 2007, 25(5): 537-543.

[11]

Arenas M. A., Casado C., Pujol V. N. Influence of the Conversion Coating on the Corrosion of Galvanized Reinforcing Steel[J]. Cem. Concr. Compos., 2006, 28(3): 267-275.

[12]

Peng T. L., Man R. L. Rare Earth and Silane as Chromate Replacers for Corrosion Protection on Galvanized Steel[J]. J. Rare. Earths., 2009, 27(1): 159-163.

[13]

NanJing Hydraulic Research Institute, China Institute of Water Resources and Hydropower Research. Testing Code of Concrete for Port and Waterwog Engineering[S]. DL/T 5150-2001, 2002

[14]

Saricimen H., Mohammad M., Quddus A., . Effectiveness of Concrete Inhibitors in Retarding Rebar Corrosion[J]. Cem. Concr. Compos., 2002, 24(1): 89-100.

[15]

Millard S. G., Law D., Bungey J. H., . Environmental Influences on Linear Polarization Corrosion Rate Measurement in Reinforced Concrete[J]. NDT & E International, 2001, 34(6): 409-417.

[16]

El-Jazairi B., Berke N. S. The Use of Calcium Nitrite Corrosion Inhibitors in Concrete, Corrosion of Reinforcement in Concrete[M], 1990 Amsterdam Elsevier Applied Science

[17]

Berke N. S. Corrosion Inhibitors in Concrete[J]. Concr. Int., 1991, 13(7): 24-27.

[18]

Soeda K., Ichimura T. Present State of Corrosion Inhibitors in Japan[J]. Cem. Concr. Compos., 2003, 25(1): 117-122.

[19]

Liu C. J., Liu H. L., Mao T. C., . Effects of RE on Atmospheric Corrosion Resistance of B450NbRE Steel[J]. Chinese Rare Earths, 2008, 29(1): 81-83.

[20]

Wang L. M., Lin Q., Yue L. J., . Study of Application of Rare Earth Elements in Advanced Low Alloy Steels[J]. J. Alloys Compd., 2008, 451(1–2): 534-537.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/