Evidence of decisive effect of crystal-field splitting in spin-state transition

Xueli Wang , Songliu Yuan , Zhaoming Tian , Liang Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 952 -956.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 952 -956. DOI: 10.1007/s11595-012-0580-6
Article

Evidence of decisive effect of crystal-field splitting in spin-state transition

Author information +
History +
PDF

Abstract

Based on the first-principle calculations for 3D Hofmann-like spin-crossover (SCO) compound [Fe(C4H4N2){Pt(CN)4}], the discrepancy of transition mechanism is clarified with quantitatively distinguishable evidence of second order phase transition. It shows that the stretch around 0.2 Å of Fe-N bond length leads to the continuous structure expansion, as the energy splitting ΔE HL between low-spin and high-spin states reduces from 2.554 2 eV to −0.327 8 eV, and the crystal-field splitting (CFS) is reduced from 1.845 8 eV to 0.420 8 eV meanwhile. A physics image relating the calculations results with CFS in the frame of ligand-field theory is presented, which manifests that CFS is a necessary parameter to be introduced directly in the theory of spinstate transition.

Keywords

spin-crossover / crystal-field splitting / first-principle calculations

Cite this article

Download citation ▾
Xueli Wang, Songliu Yuan, Zhaoming Tian, Liang Chen. Evidence of decisive effect of crystal-field splitting in spin-state transition. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 952-956 DOI:10.1007/s11595-012-0580-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gütlich P., Goodwin H. A. Spin Crossover-An Overall Perspective[J]. Top. Curr. Chem., 2004, 233: 1-47.

[2]

Kahn O., Martinez C. J. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices[J]. Science, 1998, 279: 44-48.

[3]

Murray K. S., Kepert C. J. Cooperativity in Spin Crossover Systems: Memory, Magnetism and Microporosity[J]. Top. Curr. Chem., 2004, 233: 195-228.

[4]

Niel V., Martinez-Agudo J. M., Muoz M. C., . Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)-M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt)[J]. Inorg. Chem., 2001, 40(16): 3 838-3 839.

[5]

Gaspar A. B., Muoz M. C., Real J. A. Thermal- and Pressure-Induced Cooperative Spin Transition in the 2D and 3D Coordination Polymers {Fe(5-Br-pmd)[M(CN)]} (M = Ag, Au, Ni, Pd, Pt)[J]. Inorg. Chem., 2007, 46: 9 646-9 654.

[6]

Ravindran P., Kjekshus A., Fjellvåg H., . Ground-state and Excitedstate Properties of LaMnO3 from Full-potential Calculations[J]. Phys. Rev. B, 2002, 65: 064 445

[7]

Knížek K, Novák P, Jirák Z. Spin State of LaCoO3: Dependence on CoO6 Octahedra Geometry[J]. Phys. Rev. B, 2005, 71: 054-6.

[8]

Pardo V, Baldomir D First-principles Study of the Spin-state Transitions in GdBaCo2O5.5[J]. Phys. Rev. B, 2006, 73(16): 165-7.

[9]

Wang X L, Wang C H, Tian Z, . First-Principles Based Model of Spin-state Phase Transition[J]. Chinese Phys. Lett., 2010, 27(10): 107

[10]

Ohba M., Yoneda K., Agusti G., . Bidirectional Chemo-Switching of Spin State in a Microporous Framework[J]. Angew. Chem. Int. Ed., 2009, 48: 4 767-4 771.

[11]

Hauser A. Ligand Field Theoretical Considerations[J]. Top. Curr. Chem., 2004, 233: 49-58.

[12]

Raccah P. M., Goodenough J. B. First-Order Localized-Electron Collective-Electron Transition in LaCoO3[J]. Phys. Rev., 1967, 155: 932-943.

[13]

Nekrasov I A, Streltsov S V, Korotin M, . Influence of Rareearth Ion Radii on the Low-spin to Intermediate-spin State Transition in Lanthanide Cobaltite Perovskites: LaCoO3 versus HoCoO3[J]. Phys. Rev. B, 2003, 68: 235-7.

[14]

Spiering H. Elastic Interaction in Spin Crossover Compounds[J]. Top. Curr. Chem., 2004, 235: 171-195.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/