Optical properties of Au nanoparticles coated on surface of glass or anodic aluminum oxide template

Jinyang Feng , Can Wu , Xiao Ma , Hongquan Zhang , Xiujian Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 897 -901.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 897 -901. DOI: 10.1007/s11595-012-0570-8
Article

Optical properties of Au nanoparticles coated on surface of glass or anodic aluminum oxide template

Author information +
History +
PDF

Abstract

Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process. FE-SEM, UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass, while deposition occurs on the surface of regular hollows for anodic aluminum oxide template. A sharp absorption peak appears at the wavelength of 536 nm for sample B, while there is a red shift, with a broader peak for sample A. A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A, but no noticeable fluorescence emission has been found for Sample B. The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

Keywords

gold nanoparticles / thermochemical reduction / photoreduction / fluorescence

Cite this article

Download citation ▾
Jinyang Feng, Can Wu, Xiao Ma, Hongquan Zhang, Xiujian Zhao. Optical properties of Au nanoparticles coated on surface of glass or anodic aluminum oxide template. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 897-901 DOI:10.1007/s11595-012-0570-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tao A. R., Yang P. D. Polarized Surface-enhanced Raman Spectroscopy on Coupled Metallic Nanowires[J]. J. Phys. Chem. B, 2005, 109: 15 687-15 690.

[2]

Coso R. D., Isidro J. R., Solis J., . Third Order Nonlinear Optical Susceptibility of Cu:Al2O3 Nanocomposites: from Spherical Nanoparticles to the Percolation Threshold[J]. J. Appl. Phys., 2004, 95: 2 755-2 763.

[3]

Sandrock M. L., Foss C. A. Synthesis and Linear Optical Properties of Nanoscopic Gold Particle Pair Structures[J]. J. Phys. Chem. B, 1999, 103: 11 398-11 406.

[4]

Wang Q. Q., Han J. B., Gong H. M., . Linear and Nonlinear Optical Properties of Ag Nanowire Polarizing Glass[J]. Adv.Fun. Mat., 2006, 16: 2 405-2 408.

[5]

Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions[J]. Nature Phys. Sci., 1973, 241: 20-22.

[6]

Jin R. C., Cao Y. W., Mirkin C. A., . Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science, 2001, 294: 1 901-1 903.

[7]

Kim F., Song J. H., Yang P. Photochemical Synthesis of Gold Nanorods[ J]. J. Am.Chem.Soc., 2002, 124: 14 316-14 317.

[8]

Geddes C. D., Lakowicz J. R. Metal-enhanced Fluorescence[J]. Journal of Fluorescence, 2002, 12: 121-129.

[9]

Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J]. Science, 1997, 277: 1 232-1 237.

[10]

Li X., Xu W., Zhang J., . Self-assembled Metal Colloid Films: Two Approaches for Preparing New SERS Active Substrates[J]. Langmuir, 2004, 20: 1 298-1 304.

[11]

Jing L. Q., Li X. Q., Li S. D., . XPS and SPS Studies on Nanometer Au/TiO2 Photocatalyst[J]. Chinese Journal of Catalysis, 2005, 26: 189-193.

[12]

Papavassiliou G. C. Optical Properties of Small Inorganic and Organic Metal Particles[J]. Prog. Solid State Chem., 1979, 12: 185-271.

[13]

Link S., El-Sayed M. A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles[J]. J. Phys. Chem. B, 1999, 103: 4 212-4 217.

[14]

Zande B. M., Bohmer M. R., Fokkink L. G., . Catalytic Activity of CO2 Reduction on Pt Single-crystal Electrodes: Pt(S)-[n(111)_(111)], Pt(S)-[n(111)_(100)], and Pt(S)-[n(100)_(111)] [J]. J. Phys. Chem. B, 1997, 101: 8 520-8 524.

[15]

Link S., Mohamed M., El-Sayed M. A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant[J]. J.Phys. Chem.B, 1999, 103: 3 073-3 077.

[16]

Zhu J., Wang Y. C., Huang L. Q. Simulation of the Medium Dielectric Constant Dependent Optical Properties for Gold Nanosphere[J]. Materials Chemistry and Physics, 2005, 93: 383-387.

[17]

Liao J. H., Zhang Y., Yu W. Linear Aggregation of Gold Nanoparticles in Ethanol[J]. Colloids Surf. A, 2003, 223: 177-183.

[18]

Mohamed M. B., Volkov V., Link S., . The ‘Lightning’ Gold Nanorods: Fluorescence Enhancement of Over a Million Compared to the Gold Metal[J]. Chem. Phys. Letters, 2000, 317: 517-523.

[19]

Zhu J., Wang Y. C., Qin W. Fluorescence Characteristics of Au Colloidal Nonoparticles[J]. Acta Photonica Sinica, 2003, 3: 357-360.

[20]

Zhu J., Wang Y. C., Yan S. N. Fluorescence Spectrum Characteristics of Gold Nanorods[J]. Chin.Phys.Lett., 2004, 21: 559-561.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/