The synthesis, characterization, photocatalytic evaluation and deactivation behavior of sheet-like nano titania

Guofa Cai , Jing Liao , Hongjian Zhang , Shaoxuan Gu , Baoshun Liu , Xiujian Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 857 -860.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 857 -860. DOI: 10.1007/s11595-012-0562-8
Article

The synthesis, characterization, photocatalytic evaluation and deactivation behavior of sheet-like nano titania

Author information +
History +
PDF

Abstract

The sheet-like nano TiO2 particles were prepared by using hydrothermal method, and were characterized by X-ray diffraction(XRD), infrared spectroscopy(IR), and transmission electron microscopy (TEM). It is found that the nanoparticle sizes and crystallinity increase with the increase of hydrothermal temperature from 150 °C to 160 °C, and then to 180 °C. With the increase of particle sizes, the absorption capacities and photocatalytic abilities of as-prepared TiO2 particles for crystal violet become better and better. The nano TiO2 with big particles is more stable than that with small particles, although its initial photocatalytic activity is relatively lower compared with that of the small particle samples.

Keywords

photocatalysis / titania / deactivation / absorption / crystal violet

Cite this article

Download citation ▾
Guofa Cai, Jing Liao, Hongjian Zhang, Shaoxuan Gu, Baoshun Liu, Xiujian Zhao. The synthesis, characterization, photocatalytic evaluation and deactivation behavior of sheet-like nano titania. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 857-860 DOI:10.1007/s11595-012-0562-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan B., Gratzel M. A Low-cost, High-efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films[J]. Nature, 1991, 353: 737-740.

[2]

Bach U., Corr D., Lupo D., . Nanomaterials-based Electrochromics for Paper-Quality Displays[J]. Adv. Mater., 2002, 14: 845-848.

[3]

Bonhote P., Gogniat E., Campus F., . Nanocrystalline Electrochromic Displays [J]. Displays, 1999, 20: 137-144.

[4]

Gouma P. I., Mills M. J., Sandhage K. H. The Fabrication of Free-Standing Titania-based Gas Sensors by the Oxidation of Metallic Titanium Foils[J]. J. Am. Ceram. Soc., 2000, 83(4): 1 007-1 009.

[5]

Cho Y. M., Choi W. Y., Lee C. H., . Visible Light-induced Degradation of Carbon Tetrachloride on Dye-sensitized TiO2[J]. Environ. Sci. Technol., 2001, 35: 966-970.

[6]

Zhao W., Ma W. H., Chen C. H., . Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2−xBx under Visible Irradiation[J]. J. Am. Chem. Soc., 2004, 126: 4 782-4 783.

[7]

Wang C. Y., Böttcher C., Bahnemann D. W., . A Compara-tive Study of Nanometer Sized Fe(III)-doped TiO2 Photocatalysts: Synthesis, Characterization and Activity[J]. J. Mater. Chem., 2003, 13: 2 322-2 329.

[8]

Yu J. X., Wang J. Y., Zhang J., . Characterization and Photoactivity of TiO2 Sols Prepared with Triethylamine[J]. Mater. Lett., 2007, 61: 4 984-4 988.

[9]

Chu S. Z., Wada K. J., Inoue S., . Fabrication and Structural Characteristics of Ordered TiO2-Ru(-RuO2) Nanorods in Porous Anodic Alumina Films on ITO/Glass Substrate [J]. J. Phys. Chem. B, 2003, 107: 10 180-10 184.

[10]

Kim C. S., Moon B. K., Park J. H., . Solvothermal Synthesis of Nanocrystalline TiO2 in Toluene with Surfactant[J]. J. Cryst. Growth, 2003, 257: 309-315.

[11]

Cozzoli P. D., Kornocoski A., Weller H. J. Low-temperature Synthesis of Soluble and Processable Organic-capped Anatase TiO2 Nanorods[J]. J. Am. Chem. Soc., 2003, 125: 14 539-14 548.

[12]

Jiang X. C., Wang Y. L., Herricks T., . Ethylene Glycol-mediated Synthesis of Metal Oxide Nanowires[J]. J. Mater. Chem., 2004, 14: 695-703.

[13]

Kolenko Y. V., Burukhin A. A., Churagulov B. R., . Synthesis of Nanocrystalline TiO2 Powders From Aqueous TiOSO4 Solutions under Hydrothermal Conditions[J]. Mater. Lett., 2003, 57: 1 124-1 129.

[14]

Kim C. S., Moon B. K., Park J. H., . Synthesis of Nanocrystalline TiO2 in Toluene by a Solvothermal Route [J]. J. Cryst. Growth, 2003, 254: 405-410.

[15]

Pradhan S. K., Reucroft P. J., Yang F. Q., . Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition[J]. J.Cryst. Growth, 2003, 256: 83-88.

[16]

Romano S. D., Kurlat D. H. Rheological Measurements in Titania Gels Synthesized from Reverse Micells [J]. Chem. Phys. Lett., 2000, 323(9): 93-97.

[17]

Yang J., Mei S., Ferreira J. M. F. Hydrothermal Synthesis of TiO2 Nanopowders from Tetraalkylammonium Hydroxide Peptized Sols[J]. Mater. Sci. Eng. C, 2001, 15: 183-185.

[18]

Cot F., Larbot A., Nabias G., . Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder [J]. J. Eur. Ceram. Soc., 1998, 18(14): 2 175-2 181.

[19]

Chae S. Y., Park M. K., Lee S. K., . Prepara-tion of Sizecontrolled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Film[J]. Chem. Mater., 2003, 15: 3 326-3 331.

[20]

Safarik I., Safankova M. Detection of Low Concentrations of Malachite Green and Crystal Violet in Water[J]. Water Res., 2002, 36: 196-200.

[21]

Araña J., Rodríguez J. M. D., Díaz O. G., . Gas-phase Ethanol Photocatalytic Degradation Study with TiO2 Doped with Fe, Pd and Cu[J]. J. Mol. Catal. A: Chem., 2004, 215: 153-160.

[22]

Yang X. X., Cao C. D., Hohn K., . Highly Visible-light Active C- and V-doped TiO2 for Degradation of Acetaldehyde [J]. J. Catal., 2007, 252: 296-302.

[23]

Moon J., Takagi H., Fujishiro Y., . Preparation and Characterization of the Sb-doped TiO2 Photocatalysts[J]. J. Mater. Sci., 2001, 36: 949-955.

[24]

Ichinose H., Terasaki M., Katsuki H. Synthesis of Peroxo-modified Anatase Sol from Peroxo Titanic Acid Solution[J]. J. Ceram. Soc, Jpn., 1996, 104(8): 715-718.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/