Completely green synthesis of Ag nanoparticles stabilized by soy protein isolate under UV irradiation

Ren Liu , Shilin Liu , Hua Zhou , Cheng Yang , Xiaoya Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 852 -856.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 852 -856. DOI: 10.1007/s11595-012-0561-9
Article

Completely green synthesis of Ag nanoparticles stabilized by soy protein isolate under UV irradiation

Author information +
History +
PDF

Abstract

A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation. Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm, and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver. UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles. Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized. The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria, staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI.

Keywords

soy protein isolate / Ag nanoparticles / UV irradiation

Cite this article

Download citation ▾
Ren Liu, Shilin Liu, Hua Zhou, Cheng Yang, Xiaoya Liu. Completely green synthesis of Ag nanoparticles stabilized by soy protein isolate under UV irradiation. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 852-856 DOI:10.1007/s11595-012-0561-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poliakoff M., Anastas P. Green Chemistry: A Principled Stance [J]. Nature, 2001, 413(6853): 257-258.

[2]

Desimone J. M. Practical Approaches to Green Solvents [J]. Science, 2002, 297(5582): 799-803.

[3]

Cross R. A., Kalra B. Biodegradable Polymers for the Environment[J]. Science, 2002, 297(5582): 803-807.

[4]

Wang S. L., Smith R. L., Poliakoff M. Principles of Green Chemistry: Productively[J]. Green Chem., 2005, 7: 761-762.

[5]

Vaia R. A., Maguire J. F. Polymer Nanocomposites with Prescribed Morphology: Going Beyond Nanoparticle-filled Polymers [J]. Chem. Mater., 2007, 19(11): 2 736-2 751.

[6]

Bang J. H., Suslick K. S. Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres [J]. Adv. Mater., 2009, 21(1): 1-5.

[7]

Liu G., Yang H. G., Wang X., . Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN [J]. J. Am. Chem. Soc., 2009, 131(36): 12 868-12 869.

[8]

Mclaren A., Valdes-Solis T., Li G., . Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity [J]. J. Am. Chem. Soc., 2009, 131(35): 12 540-12 541.

[9]

Kim C. W., Kim Y. H., Cha H. G., . Synthesis and Characterization of Highly Magnetized Nanocrystalline Co30Fe70 Alloy by Chemical Reduction [J]. J. Phys. Chem. B, 2006, 110(48): 24 418-24 423.

[10]

Mulfort K. L., Hump J. T. Chemical Reduction of Metal-Organic Framework Materials as a Method to Enhance Gas Uptake and Binding [J]. J. Am. Chem. Soc., 2007, 129(31): 9 604-9 605.

[11]

Shen M., Carey J. E., Crouch C. H., . High-Density Regular Arrays of Nanometer-Scale Rods Formed on Silicon Surfaces via Femtosecond Laser Irradiation in Water [J]. Nano. Lett., 2008, 8(7): 2 087-2 091.

[12]

Bigall N. C., Reitzig M., Naumann W., . Fungal Templates for Noble-Metal Nanoparticles and Their Application in Catalysis [J]. Angewandte. Chemie. Inter. Ed., 2008, 47(41): 7 876-7 879.

[13]

Luo C. C., Zhang Y. H., Zeng X. W., . The Role of Poly (ethylene glycol) in the Formation of Silver Nanoparticles [J]. J.Colloid & Interface Sci., 2005, 288(2): 444-448.

[14]

Burt J. L., Wing C. G., Yoshida M. M., . Noble-Metal Nanoparticles Directly Conjugated to Globular Proteins [J]. Langmuir, 2004, 20(26): 11 778-11 783.

[15]

Fang N., Yu S., Badger T. M. Comprehensive Phytochemical Profile of Soy Protein Isolate [J]. J. Agric. Food. Chem., 2004, 52(12): 4 012-4 020.

[16]

Raveendran P., Fu J., Wallen S. L. Completely “Green” Synthesis and Stabilization of Metal Nanoparticles [J]. J. Am. Chem. Soc., 2003, 125(46): 13 940-13 941.

[17]

Vigneshwaran N., Kathe A. A., Varadarajan P. V., . Silver-Protein (Core-Shell) Nanoparticle Production Using Spent Mushroom Substrate[J]. Langmuir, 2007, 23(13): 7 113-7 117.

[18]

Guan J. J., Qiu A. Y., Liu X. Y., . Microwave Improvement of Soy Protein Isolate-saccharide Graft Reactions[J]. Food Chem., 2006, 97(4): 577-585.

[19]

Everett D. H. Basic Principles of Colloid Science[M], 1988 London The Royal Society of Chemistry

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/