Self-assembly of Ag-TiO2 nanoparticles: Synthesis, characterization and catalytic application

Xin Wang , Xiaoheng Liu , Xinyun Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 847 -851.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 847 -851. DOI: 10.1007/s11595-012-0560-x
Article

Self-assembly of Ag-TiO2 nanoparticles: Synthesis, characterization and catalytic application

Author information +
History +
PDF

Abstract

The formation of Ag clusters on titanium oxide (TiO2) nanoparticles was achieved by selfassembly process and calcination. The obtained nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet visible spectroscopy (UV-Vis), and conventional techniques (XRD, TEM and UV-Vis) were used to identify Ag particles on the TiO2 surfaces. The results show that Ag-TiO2 particles can be applied to improve catalytic activity of the epoxidation of styrene oxides. Styrene oxide is the main product of catalytic reaction with H2O2 as the oxidant by using Ag-TiO2 nanoparticles as catalysts. High catalytic activitity of styrene oxide can be obtainable at 80 °C. The reaction temperature, reaction time, the molar ratio of H2O2/styrene and solvent affect greatly the catalytic epoxidation of styrene.

Keywords

self-assembly / Ag-TiO2 nanoparticles / catalysis

Cite this article

Download citation ▾
Xin Wang, Xiaoheng Liu, Xinyun Wang. Self-assembly of Ag-TiO2 nanoparticles: Synthesis, characterization and catalytic application. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 847-851 DOI:10.1007/s11595-012-0560-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iliev V., Tomova D., Bilyarska L., . Influence of the Size of Gold Nanoparticles Deposited on TiO2 upon the Photocatalytic Destruction of Oxalic Acid[J]. J. Mol. Catal. A: Chem., 2007, 263(1–2): 32-38.

[2]

Sankapal B. R., Sartale S. D., Lux-Steiner C., . Chemical and Electrochemical Synthesis of Nanosized TiO2 Anatase for Large-area Photon Conversion[J]. C. R. Chimie, 2006, 9(5–6): 702-707.

[3]

Xie M. Z., Jing L. Q., Zhou J., . Synthesis of Nanocrystalline Anatase TiO2 by One-pot Two-phase Separated Hydrolysis-solvothermal Processes and Its High Activity for Photocatalytic Degradation of Rhodamine B[J]. J. Hazard. Mater., 2010, 176(1–3): 139-145.

[4]

Ohsaka T., Shinozaki K., Tsuruta T., . Photo-electrochemical Degradation of Some Chlorinated Organic Compounds on N-TiO2 Electrode[J]. Chemosphere, 2008, 73(81): 279-1 283.

[5]

Su C. C., Liao C. H., Wang J. D., . The Adsorption and Reactions of Methyl Iodide on Powdered Ag/TiO2[J]. Catal. Today, 2004, 97(1): 71-79.

[6]

Kwon C. H., Kim J. H., Jung I. S., . Preparation and Characterization of TiO2-SiO2 Nano-composite Thin Films[J]. Ceram. Int., 2003, 29(8): 851-856.

[7]

Sharmaa G. D., Suresha P., Sharmaa S. K., . Optical and Electrical Properties of Hybrid Photovoltaic Devices from Poly (3-phenyl hydrazone thiophene) (PPHT) and TiO2 Blend Films[J]. Sol. Energ. Mat. Sol. C, 2008, 92(1): 61-70.

[8]

Kim Y. H., Kim C. W., Cha H. G., . Bulklike Thermal Behavior of Antibacterial Ag-SiO2 Nanocomposites[J]. J. Phys. Chem. C, 2009, 113(13): 5 105-5 110.

[9]

Du J. M., Zhang J. L., Liu Z. M., . Controlled Synthesis of Ag/TiO2 Core-shell Nanowires with Smooth and Bristled Surfaces via a Onestep Solution Route[J]. Langmuir, 2006, 22(3): 1 307-1 312.

[10]

Ghosh R., Shen X. F., Villegas J. C., . Role of Manganese Oxide Octahedral Molecular Sieves in Styrene Epoxidation[J]. J. Phys. Chem. B, 2006, 110(14): 7 592-7 599.

[11]

Espinal L., Suib S. L., Rusling J. F. Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2[J]. J. Am. Chem. Soc., 2004, 126(14): 7 676-7 682.

[12]

Klust A., Madix R. J. Selectivity Limitations in the Heterogeneous Epoxidation of Olefins: Branching Reactions of the Oxametallacycle Intermediate in the Partial Oxidation of Styrene[J]. J. Am. Chem. Soc., 2006, 128(4): 1 034-1 035.

[13]

Zhou L., Gorin C. F., Madix R. J. Cesium Promotion in Styrene Epoxidation on Silver Catalysts[J]. J. Am. Chem. Soc., 2010, 132(2): 434-435.

[14]

Chimentão R. J., Medina F., Fierro J. L. G., . Propene Epoxidation by Nitrous Oxide over Au-Cu/TiO2 Alloy Catalysts[J]. J. Mol. Catal. A: Chem., 2007, 274(1–2): 159-168.

[15]

Lignier P., Mangematin S., Morfin F., . Solvent and Oxidant Effects on the Au/TiO2-catalyzed Aerobic Epoxidation of Stilbene[J]. Catal. Today, 2008, 138(1–2): 50-54.

[16]

Liu X. H., Kan C., Wang X., . Self-assembled Nanodisks with Targetlike Multirings Aggregated at the Air-water Interface[J]. J. Am. Chem. Soc., 2006, 128(1): 430-431.

[17]

Kan C., Liu X. H., Wang X., . Effects of Different Anionic Surfactant Templates (H+A, Na+A) on Titanium Self-assembly: In the Air-water Interfacial Films[J]. Colloid. Surface A: Physicochem. Eng. Aspects, 2007, 311(1–3): 93-98.

[18]

Weibel J. M., Blanc A., Pale P. Ag-mediated Reactions: Coupling and Heterocyclization Reactions[J]. Chem. Rev., 2008, 108(8): 3 149-3 150.

[19]

Brook L. A., Evans P., Foster H. A., . Highly Bioactive Silver and Silver/titania Composite Films Grown by Chemical Vapour Deposition[J]. J. Photochem. Photobiol. A: Chem., 2007, 187(1): 53-63.

[20]

Wang J., Zhao G., Zhang Z. H., . Investigation on Degradation of Azo Fuchsine Using Visible Light in the Presence of Heat-treated Anatase TiO2 Powder[J]. Dyes and Pigments, 2007, 75(2): 335-343.

[21]

Water L. G. A. V., Bergwerff J. A., Alexander-Nijhuis T., . UV-Vis Microspectroscopy: Probing the Initial Stages of Supported Metal Oxide Catalyst Preparation[J]. J. Am. Chem. Soc., 2005, 127(14): 5 024-5 025.

[22]

Yu D., Yam V. W. W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water[J]. J. Am. Chem. Soc., 2004, 126(41): 13 200-13 201.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/