Influence of pH on the property of apatite-type lanthanum silicates prepared by sol-gel process

Qingle Shi , Lihua Lu , Yanwei Zeng , Hua Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 841 -846.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (5) : 841 -846. DOI: 10.1007/s11595-012-0559-3
Article

Influence of pH on the property of apatite-type lanthanum silicates prepared by sol-gel process

Author information +
History +
PDF

Abstract

The apatite-type lanthanum silicates with formula La9.33Si6O26 are prepared by sol-gel process. The homogeneity of the sol affected by pH value of the solution is investigated. The viscosity of the sols slightly increases first and then increases abruptly because the predominant reaction mechanism changes from hydrolysis reaction to condensation reaction. In addition, the onset time of the increase for the viscosity shortens from pH 1 to pH 4. The gelation time decreases with increasing pH of the solution. Therefore, the pH of the sols should be less than 4 to form gel. The sol with initial pH 2 shows maximum value of zeta potential and maximum stability. For the sample with initial pH 2, pure apatite-type lanthanum silicates La9.33Si6O26 have been successfully prepared after the dried gel is calcined at 1 000 °C. In addition, this sample sintered at 1 550 °C exhibits the highest ionic conductivity. The activation energies are all less than 0.90 eV.

Keywords

sol-gel process / pH / X-ray diffraction / ionic conductivity

Cite this article

Download citation ▾
Qingle Shi, Lihua Lu, Yanwei Zeng, Hua Zhang. Influence of pH on the property of apatite-type lanthanum silicates prepared by sol-gel process. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(5): 841-846 DOI:10.1007/s11595-012-0559-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hong S. J., Mehta K., Virkar A. V. Effect of Microstructure and Composition on Ionic Conductivity of Rare-Earth Oxide-Doped Ceria [J]. J. Electrochem. Soc., 1998, 145(2): 638-647.

[2]

Guan X., Zhou H., Liu Z., . High Performance Gd3+ and Y3+ Codoped Ceria-based Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells [J]. Mater. Res. Bull., 2008, 43(4): 1 046-1 054.

[3]

Wang F. Y., Chen S. Gd3+ and Sm3+ Co-Doped Ceria Based Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells [J]. Electrochem. Commun., 2004, 6(8): 743-746.

[4]

Ishihara T., Mastuda H., Takita Y. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor [J]. J. Am. Chem. Soc., 1994, 116(9): 3 801-3 803.

[5]

Taniguchi N., Yasumoto E., Nakagiri Y., . Sensing Properties of an Oxygen Sensor Using BaCe0.8Gd0.2O3-α Ceramics as Electrolytes [J]. J. Electrochem. Soc., 1998, 145(5): 1 744-1 748.

[6]

Huang K., Goodenough J. B. A Solid Oxide Fuel Cell Based on Sr- and Mg-doped LaGaO3 Electrolyte: the Role of a Rare-Earth Oxide Buffer [J]. J. Alloy Compd., 2000, 303–304: 454-464.

[7]

Webster N. A. S., Ling C. D., Raston C. L., . The Structure and Conductivity of New Fluorite-Type Bi2O3-Er2O3-PbO Materials [J]. Solid State Ionics, 2007, 178(25–26): 1 451-1 457.

[8]

Nakayama S., Sakamoto M. Electrical Properties of New Type High Oxide Ionic Conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy) [J]. J. Eur. Ceram. Soc., 1998, 18(10): 1 413-1 418.

[9]

Nakayama S., Kageyama T., Aono H., . Ionic Conductivity of Lanthanoid Silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) [J]. J. Mater. Chem., 1995, 5(11): 1 801-1 805.

[10]

Panteix P. J., Julien I., Bernache A. D., . Synthesis and Characterization of Oxide Ions Conductors with the Apatite Structure for Intermediate Temperature SOFC [J]. Mater. Chem. Phys., 2006, 95: 313-320.

[11]

Tian C., Liu J., Zeng Y., . Direct Synthesis of La9.33Si6O26 Ultrafine Powder via Sol-Gel Self-Combustion Method [J]. J. Alloy Compd., 2008, 245: 378-382.

[12]

Tolchard J. R., Islam M. S., Slater P. R. Defect Chemistry and Oxygen Ion Migration in the Apatite-Type Materials La9.33Si6O26 and La8Sr2Si6O26 [J]. J. Mater. Chem., 2003, 13: 1 956-1 961.

[13]

Islam M S, Tolchard J R, Slater P R An Apatite for Fast Oxide Ion Conduction [J]. Chem. Commun., 2003, 1: 486-1.

[14]

Abram E. J., Sinclair D. C., West A. R. A Novel Enhancement of Ionic Conductivity in the Cation-Deficient Apatite La9.33(SiO4)6O2 [J]. J. Mater. Chem., 2001, 11: 1 978-1 979.

[15]

McFarlane J., Barth S., Slater P. R., . Synthesis and Conductivities of the Apatite-type Systems, La9.33+xSi6−yMyO26+z (M = Co, Fe, Mn) and La8Mn2Si6O26 [J]. Ionics, 2008, 8: 149-154.

[16]

Tao S., Irvine J. T. S. Preparation and Characterisation of Apatite-Type Lanthanum Silicates by Sol-Gel Processes [J]. Mater. Res. Bull., 2001, 36: 1 245-1 258.

[17]

Nakajima T., Nishio K., Ishigaki T., . Preparation and Electrical Properties of Lnx(SiO4)6O(1.5x−12) (Ln: Nd, La) with Apatite Structure [J]. J. Sol-Gel Science and Technology, 2005, 33: 107-111.

[18]

Célerier S., Laberty C., Ansart F., . Synthesis by Sol-Gel Route of Oxyapatite Powders for Dense Ceramics: Applications as Electrolytes for Solid Oxide Fuel Cells [J]. J. Eur. Ceram. Soc., 2005, 25(12): 2 665-2 668.

[19]

Célérier S., Laberty C., Ansart F., . New Chemical Route Based on Sol-Gel Process for the Synthesis of Oxyapatite La9.33Si6O26 [J]. Ceram. Int., 2006, 32(3): 271-276.

[20]

Jeffrey C., Scherer G. Sol-Gel Science [M], 1990 New York Academic Press Inc.

[21]

H Yoshioka. Oxide Ionic Conductivity of Apatite-Type Lanthanum Silicates [J]. J. Alloy Compd., 2006 (408–412): 649–652

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/