The microstructure and properties of Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 ceramic system

Mi Xiao , Qianqian Zhang , Cuiran Jia

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (4) : 735 -739.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (4) : 735 -739. DOI: 10.1007/s11595-012-0538-8
Article

The microstructure and properties of Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 ceramic system

Author information +
History +
PDF

Abstract

The microstructure and dielectric properties of Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 (x=0, 0.04, 0.08, 0.12, 0.16) ceramic system were investigated. The Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 ceramics were prepared by the traditional solid-state reaction method and were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM) and Raman spectrometer. The sintering ability and dielectric properties of Ag(Nb0.8Ta0.2)1−x (Mn0.5W0.5) xO3 were found to be improved with the doping of Mn4+ and W6+ ions. The densification temperature of Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 ceramics decreased from 1 080 °C to 1 000 °C when x increased from 0 to 0.16. Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 ceramic was found to have the best dielectric properties when x=0.08, larger permittivity (ɛ=547) and smaller dielectric loss (tanδ=0.00156).

Keywords

dielectric properties / silver niobate tantalite / MnO2 / WO3

Cite this article

Download citation ▾
Mi Xiao, Qianqian Zhang, Cuiran Jia. The microstructure and properties of Ag(Nb0.8Ta0.2)1−x(Mn0.5W0.5) xO3 ceramic system. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(4): 735-739 DOI:10.1007/s11595-012-0538-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Volkov A.A., Gorshunov B.P., Komandin G., . High-frequency Dielectric Spectra of AgTaO3-AgNbO3 Mixed Ceramics [J]. Journal of Physics: Condensed Matter, 1995, 7(4): 785-793.

[2]

Valant M., Suvorov D. New High-permittivity AgNb1−xTaxO3 Microwave Ceramics: Part II Dielectric Characteristics [J]. Journal of the American Ceramic Society, 1998, 82(1): 88-93.

[3]

Petzelt J., Kamba S., Buixaderas E., . Infrared and Microwave Dielectric Response of the Disordered Antiferroelectric Ag(Ta,Nb)O3 system [J]. Ferroelectrics, 1999, 223(1–4): 235-246.

[4]

Kania A. AgTaxNb1−xO3 Solid Solutions-Dielectric Properties and Phase Transitions [J]. Phase Transition, 1983, 3(2): 131-140.

[5]

Suvorov D., Valant M., Kolar D. The Role of Dopants in Tailoring the Microwave Properties of Ba6-xR8+2/3xTi18O54 R = (La-Gd) Ceramics [J]. Journal of Materials Science, 1997, 32(24): 6 483-6 488.

[6]

Desu S.B., O’Bryan H.M. Microwave Loss Quality of BaZn1/3Ta2/3O3 Ceramics [J]. Journal of the American Ceramic Society, 1985, 68(10): 546-551.

[7]

Valant M., Suvorov D., Hoffmann C., . Ag(Nb,Ta)O3-based Ceramics with Suppressed Temperature Dependence of Permittivity [J]. Journal of the European Ceramic Society, 2001, 21(15): 2 647-2 651.

[8]

Hafid M., Kugel G.E., Kania A., . Study of the Phase Transition Sequence of Mixed Silver Tantalate-niobate (AgTa1−xNbxO3) by Inelastic Light Scattering [J]. Journal of Physics: Condensed Matter, 1992, 4(9): 2 333-2 345.

[9]

Fortin W., Kugel G.E., Grigas J., . Manifestation of Nb Dynamics in Raman, Microwave, and Infrared Spectra of the AgTaO3-AgNbO3 Mixed System [J]. Journal of Applied Physics, 1996, 79(8): 4 273-4 283.

[10]

Sciau P., Kania A., Dkhil B., . Structural Investigation of AgNbO3 Phases Using X-ray and Neutron Diffraction [J]. Journal of Physics: Condensed Matter, 2004, 16(16): 2 795-2 810.

[11]

Kania A. Dielectric Properties of Ag1−xAxNbO3 (A: K, Na and Li) and AgNb1−xTaxO3 Solid Solutions in the Vicinity of Diffuse Phase Transitions [J]. Journal of Physics D: Applied Physics, 2001, 34(10): 1 447-1 455.

[12]

Porokhonsky V., Bovtun V., Kamba S., . Microwave Dielectric Properties of the Ag1−xLixNbO3 (x = 0–0.06) Ceramics [J]. Ferroelectrics, 2000, 238(1): 131-138.

[13]

Kania A., Miga S. Preparation and Dielectric Properties of Ag1−x LixNbO3(ALN) Solid Solutions Ceramics [J]. Materials Science and Engineering: B, 2001, 86(2): 128-133.

[14]

Kania A., Kwapulinski J. Ag1−xNaxNbO3(ANN) Solid Solutions: from Disordered Antiferroelectric AgNbO3 to Normal Antiferroelectric NaNbO3 [J]. Journal of Physics: Condensed Matter, 1999, 11(45): 8 933-8 946.

[15]

Li L.X., Guo W., Wu X.W. Effect of Na+ on Dielectric Properties of ANT System [J]. Journal of Inorganic Materials, 2004, 19(4): 823-826.

[16]

Guo X.Y., Xiao M., Wu X.W., . Effect of Sb5+ Substitution on the Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics[J]. Materials letters, 2007, 61(14–15): 2 939-2 942.

[17]

Wang H., Peng Z., Du H.L., . Mn4+ and W6+ Substitution on Bi2O3-ZnO-Nb2O5-based Low Firing Ceramics[J]. Ceramics International, 2004, 30(7): 1 219-1 223.

[18]

Guo X.Y., Xiao M., Wang H.R., . Synthesis of Ag(Nb0.8Ta0.2)O3 by Solid-state Reaction Methods [J]. Journal of Inorganic Materials, 2006, 21(1): 134-138.

[19]

Kugel G.E., Fontana M.D., Hafid M., . A Raman Study of Silver Tantalate (AgTaO3) and Its Structural Phase Transition Sequence [J]. Journal of Physics C: Solid State Physics, 1987, 20: 1217

[20]

Juang Y.D., Dai S.B., Wang Y.C., . Phase Transition of LixNa1−xNbO3 Studies by Raman Scaterring Method [J]. Solid State Communications, 1999, 111(12): 723-728.

[21]

Guo X.Y., Xiao M., Wu X.W. Synthesis of Ag(Nb0.8Ta0.2)O3 under Different Ambient Conditions [J]. Transactions of Tianjin University, 2006, 12(1): 23-27.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/