Effects of size and surface modification of multi-walled carbon nanotubes on mechanical properties of polyurethane-based nanocomposites

Fang Zhang , Jin Huang , Hao Zhang , Zhongmin Su , Qiaoxin Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (4) : 608 -614.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (4) : 608 -614. DOI: 10.1007/s11595-012-0514-3
Article

Effects of size and surface modification of multi-walled carbon nanotubes on mechanical properties of polyurethane-based nanocomposites

Author information +
History +
PDF

Abstract

Polyurethanes/multi-walled carbon nanotube (PU/CNT) composites were prepared with a help of ultrasonically dispersing CNT in the traditional procedure of synthesizing polyurethane. In this case, the various loading levels, sizes and surface-modified groups were considered to regulate the mechanical performances of the PU/CNT nanocomposites. Moreover, the structure and mechanical properties of all the PU/CNT nanocomposites were investigated by attenuated total reflection-Fourier transform infrared spectroscopy, dynamic mechanical analysis, scanning electron microscope, transmission electron microscope, and tensile testing. The experimental results showed that a moderate loading-level of 0.1wt% and a diameter of 10–15 nm for CNT could produce the maximum tensile strength and elongation while it was worth noting that the surface carboxylation of CNT could further enhance the tensile strength and elongation of the PU/CNT nanocomposites.

Keywords

nanocomposites / polyurethane / carbon nanotubes / mechanical properties

Cite this article

Download citation ▾
Fang Zhang, Jin Huang, Hao Zhang, Zhongmin Su, Qiaoxin Zhang. Effects of size and surface modification of multi-walled carbon nanotubes on mechanical properties of polyurethane-based nanocomposites. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(4): 608-614 DOI:10.1007/s11595-012-0514-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baughman R.H., Zakhidov A.A., Heer W.A.D. Carbon Nanotubes — the Route Toward Applications[J]. Science, 2002, 297(5582): 787-792.

[2]

Nanda GS, Sravendra R, Jae, WC, Lin L and Siew HC. Polymer Nanocomposites based on Functionalized Carbon Nanotubes[J]. Prog. Polym. Sci., 35(7): 837–867

[3]

Zdenko S., Dimitrios T., Konstantinos P., Costas G. Carbon NanotubePolymer Composites: Chemistry, Processing, Mechanical and Electrical Properties[J]. Prog. Polym. Sci., 2010, 35(3): 357-401.

[4]

Dinadayalane T.C., Leszczynski J. Remarkable Diversity of Carbon-Carbon Bonds: Structures and Properties of Fullerenes, Carbon Nanotubes, and Grapheme[J]. Struct. Chem., 2010, 21: 1 155-1 169.

[5]

Lin Y., Zhou B., Shiral Fernando K.A., Liu P., Allard L.F., Sun Y.P. Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer[J]. Macromolecules, 2003, 36(19): 7 199-7 204.

[6]

Liu T., Phang I.Y., Shen L., Chow S. Y., Zhang W.D. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites[J]. Macromolecules, 2004, 37(19): 7 214-7 222.

[7]

Zhao C., Hu G., Schaefer D.W., Zhang S., Yang M., Han C.C. Syn-thesie and Characterization of Multi-Walled Carbon Nanotubes Reinforced Polyamide 6 via In Situ Polymerization[J]. Polymer, 2005, 46(14): 5 125-5 132.

[8]

Chou W.J., Wang C.C., Chen C.Y. Characteristics of Polyimide-Based Nanocomposites Containing Plasma-Modified Multi-Walled Carbon Nanotubes[J]. Compos. Sci. Technol., 2008, 68(10): 2 208-2 213.

[9]

Sreekumar T.V., Liu T., Min B.G., Go H., Kumar S., Hauge R.H., Smalley R. E. Polyacrylonitrile Single-walled Carbon Nanotube Composite Fibers[J]. Adv. Mater., 2004, 16(1): 58-61.

[10]

Brown J.M., Anderson D.P., Justice R.S., Lafdi K., Belfor M., Strong K.L., Schaefer D.W. Hierarchical Morphology of Carbon Single-Walled Nanotubes During Sonication in an Aliphatic Diamine[J]. Polymer, 2005, 46(24): 10 854-10 865.

[11]

Kanagaraj S., Varanda F.R., Zhil’tsova T.V., Oliveira M.S.A., Simoes J.A.O. Mechanical Properties of High Density Polyethylene/Carbon Nanotube Composites[J]. Compos. Sci. Technol., 2007, 67(15–16): 3 071-3 077.

[12]

Grossiord N., Miltner H.E., Loos J., Meuldijk J., Van Mele B., Koning C.E. On the Crucial Role of Wetting in the Preparation of Conductive Polystyrene-Carbon Nanotube Composites[J]. Chem. Mater., 2007, 19(15): 3 787-3 792.

[13]

Sun Y.P., Fu K., Lin Y., Huang W.J. Functionalized Carbon Nanotubes: Properties and Applications[J]. Acc. Chem. Res., 2002, 35(12): 1 096-1 104.

[14]

Chen J., Hamon M.A., Hu H., Chen Y.S., Rao A.M., Eklund P.C., Haddon R. C. Solution Properties of Single-Walled Carbon Nanotubes[J]. Science, 1998, 282(5386): 95-98.

[15]

Sano M., Kamino A., Okamura J., Shinkai S. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films[J]. Langmuir, 2001, 17(17): 5 125-5 128.

[16]

Ying Y.M., Saini R.K., Liang F., Sadana A.K., Billups W.E. Functionalization of Carbon Nanotubes by Free Radicals[J]. Org. Lett., 2003, 5(9): 1 471-1 473.

[17]

Georgakilas V., Kordatos K., Prato M., Guldi D.M., Holzinger M., Hirsch A. Organic Functionalization of Canbon Nanotubes[J]. J. Am. Chem. Soc., 2002, 124(5): 760-761.

[18]

Ruan S. L., Gao P., Yang X. G., Yu T.X. Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multiwalled Carbon Nanotubes[J]. Polymer, 2003, 44(19): 5 643-5 654.

[19]

Tang W., Santare M.H., Advani S.G. Melt Processing and Mechanical Property Characterization of Multi-Walled Carbon Nanotube/High Density Polyethylene (MWNT/HDPE) Composite Films[J]. Carbon, 2003, 41(14): 2 779-2 785.

[20]

Gordeyev S.A., Macedo F.J., Ferreira J.A., Hattum F.W.J., Bernardo C. C. Transport Properties of Polymer-Vapour Grown Carbon Fibre Composites[C]. Phys B: Cond. Matt., 2000, 279(1–3): 33-36.

[21]

Jin Z., Pramoda K.P., Xu G., Goh S.H. Dynamic Mechanical Behavior of Melt-Processed Multi-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Composites[J]. Chem. Phys. Lett., 2001, 337(1–3): 43-47.

[22]

Chapelle M.L., Stephan C., Nguyen T.P., Lefrant S., Journet C., Bernier P., Munoz E., Benito A., Maser W.K., Martinez M.T., Fuente G.F., Guillard T., Flaant G., Alvarez L., Lap-laze D. Raman Characterization of Singlewalled Carbon Nanotubes and PMMA-Nanotubes Composites[J]. Synth. Met., 1999, 103(1–3): 2 510-2 512.

[23]

Jia Z., Wang Z., Xu C., Liang J., Wei B., Wu D., Zhu S. Surface Modified Multiwalled Carbon Nanotubes in CNT/Epoxy-Composites[J]. Mater. Sci. Eng. A., 1999, 271: 395-400.

[24]

Andrews R., Jaques D., Rao A.M., Rantell T., Derbyshire F., Chen Y., Chen J., Haddon R.C. Nanotube Composite Carbon Fibers[J]. Appl. Phys. Lett., 1999, 75(9): 1 329-1 331.

[25]

Schadler L.S., Ciannaris S.C., Ajayan P.M. Load Transfer in Carbon Nanotube Epoxy Composites[J]. Appl. Phys. Lett., 1998, 73(26): 3 842-3 844.

[26]

Park J.M., Kim D.S., Lee J.R., Kim T.W. Nondestructive Damage Sensitivity and Reinforcing Effect of Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Technique[C]. Mater. Sci. Eng. C., 2003, 23(6–8): 971-975.

[27]

Gojny F.H., Nastalczyk J., Roslaniec Z., Schulte K. Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites[J]. Chem. Phys. Lett., 2003, 370(5–6): 820-824.

[28]

Quan D., Dickey E.C., Andrews R., Rantell T. Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites[J]. Appl. Phys. Lett., 2000, 76(20): 2 868-2 870.

[29]

Fernandez M., Landa M., Eugenia Munoz M., Santamaria A. Thermal and Viscoelastic Features of New Nanocomposites Based on a Hot-Melt Adhesive Polyurethane and Multi-Walled Carbon Nanotubes[J]. Macromol. Mater. Eng., 2010, 295(11): 1 031-1 041.

[30]

Chattopadhyay D.K., Dean C.W. Thermal Stability and Flame Retardancy of Polyurethanes[J]. Prog. Polym. Sci., 2009, 34(10): 1 068-1 133.

[31]

Marc B., Muhammad Y.R., Andreas L. Multifunctional Shape-Memory Polymers[J]. Adv. Mater., 2010, 22(31): 3 388-3 410.

[32]

Zdrahala R.J., Zdrahal I.J. Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future[J]. J. Biomater. Appl., 1999, 14: 67-90.

[33]

Sahoo N.G., Jung Y.C., Yoo H.J., Cho J.W. Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites[J]. Macromol. Chem. Phys., 2006, 207(19): 1 773-1 780.

[34]

Sahoo N.G., Jung Y.C., Yoo H.J., Cho J.W. Influence of Carbon Nanotubes and Polypyrrole on the Thermal, Mechanical and Electroactive Shape-Memory Properties of Polyurethane Nanocomposites[J]. Compos. Sci. Technol., 2007, 67(9): 1 920-1 929.

[35]

Guo S.Z., Zhang C., Wang W.Z., Liu T.X., Tjiu W.C., He C.B., Zhang W.D. Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites[J]. Polym. Polym. Compos., 2008, 16(8): 501-507.

[36]

Buffa F., Abraham G.A., Grady B.P., Resasco D. Effect of Nanotube Functionalization on the Properties of Single-Walled Carbon Nanotube/Polyurethane Composites[J]. J. Polym. Sci. Part B Polym. Phys., 2007, 45(4): 490-501.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/