The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength

Qiang Wang , Peiyu Yan , Jianwen Feng

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 586 -589.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 586 -589. DOI: 10.1007/s11595-012-0510-7
Article

The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength

Author information +
History +
PDF

Abstract

The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength was investigated. Three mineral admixtures (fly ash, ground granulated blast-furnace slag and steel slag) were used. The adding amount of mineral admixture in this study ranges from 22.5% to 60%, and the water-to-binder ratio ranges from 0.34 to 0.50. With equal compressive strength, different mortars can be arranged in such a descending order with their bending strength: cement-fly ash mortar, cement mortar, cement-GGBS mortar, and cement-steel slag mortar. With the same compressive strength, the higher the steel slag content and water-to-binder ratio, the lower the bending strength of mortars. However, the effect of mineral mixture content and water-to-binder ratio on the bending strength of cement-fly ash mortar and cement-GGBS mortar is far inconspicuous.

Keywords

mineral admixtures / bending strength / compressive strength

Cite this article

Download citation ▾
Qiang Wang, Peiyu Yan, Jianwen Feng. The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(3): 586-589 DOI:10.1007/s11595-012-0510-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitcin P. C. Cement of Yesterday and Today-Concrete of Tomorrow [J]. Cem. Concr. Res., 2000, 30(9): 1 349-1 359.

[2]

Mindess S., Young J. F. Concrete [M], 1981 New Jersey Englewood Cliffs

[3]

Banthia N., Sappakittipakorn M. Toughness Enhancement in Steel Fiber Reinforced Concrete through Fiber Hybridization [J]. Cem. Concr. Res., 2007, 37(9): 1 366-1 372.

[4]

Sabir B. B. Toughness and Tortuosity of Polypropylene Fibre Reinforced Concrete [J]. Mag. Concr. Res., 2001, 53(3): 163-170.

[5]

H H., N B. Correlating Flexural and Shear Toughness of Lightweight Fiber-reinforced Concrete [J]. ACI J., 2008, 105(3): 251-257.

[6]

Berry E. E., Malhotra V. M. Fly Ash for Use in Concrete -A Critical Review [J]. ACI J., 1982, 2(3): 59-73.

[7]

Langan B. W., Weng K., Ward M. A. Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement [J]. Cem. Concr. Res., 2002, 32(7): 1 045-1 051.

[8]

Ati D. C. Heat Evolution of High-Volume Fly Ash Concrete [J]. Cem. Concr. Res., 2002, 32(5): 751-756.

[9]

J F Lamond, J H Pielert. Significance of Tests and Properties of Concrete and Concrete-making Materials [J]. ASTM STP, 2006: 113–114

[10]

Malhotra V. M. Durability of Concrete Incorporating High-volume of Low-calcium Fly Ash [J]. Cem. Concr. Comp., 1990, 12(4): 271-277.

[11]

Jiang L. H., Liu Z. Q., Ye Y. Q. Durability of Concrete Incorporating Large Volumes of Low-quality Fly Ash [J]. Cem. Concr. Res., 2004, 34(8): 1 467-1 469.

[12]

Fernandez-Jimenez A., Garcia-Lodeiro I., Palomo A. Durability of Alkali-activated Fly Ash Cementitious Materials [J]. J. Mater. Sci., 2002, 42(9): 3 055-3 065.

[13]

Sisomphon K. A Chemical Analysis Method for Determining Blastfurnace Slag Content in Hardened Concrete [J]. Constr. Build. Mater., 2009, 23(1): 54-61.

[14]

Chidiac S. E., Panesar D. K. Evolution of Mechanical Properties of Concrete Containing Ground Granulated Blast Furnace Slag and Effects on the Scaling Resistance Test at 28 Days [J]. Cem. Concr. Comp., 2008, 30(2): 63-71.

[15]

Osborne G. J. Durability of Portland Blast-furnace Slag Cement Concrete [J]. Cem. Concr. Res., 1999, 21(1): 11-21.

[16]

Shi C. J. Steel Slag-Its Production, Processing, Characteristics, and Cementitious Properties [J]. J. Mater. Civil. Eng., 2004, 16(3): 230-236.

[17]

Tsakiridis P. E., Papadimitriou G. D., Tsivilis S., . Utilization of Steel Slag for Portland Cement Clinker Production [J]. J. Hazard. Mater., 2008, 152(2): 805-811.

[18]

Ahmad M., Masoud K. A. Producing Portland Cement From Iron and Steel Slags and Limestone [J]. Cem. Concr. Res., 1999, 29(9): 1 373-1 377.

[19]

Tufekci M., Demirbas A., Genc H. Evaluation of Steel Furnace Slags as Cement Additives [J]. Cem. Concr. Res., 1997, 27(11): 1 713-1 717.

[20]

Wang Q., Yan P. Y. Hydration Properties of Basic Oxygen Furnace Steel Slag [J]. Constr. Build. Mater., 2010, 24(7): 1 134-1 140.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/