Microstructure and electrochemical behavior of laser cladded HA coating on pure titanium TA2

Quanjin Zang , Xijing He , Naiming Lin , Haopeng Li , Dong Wang , Pinglin Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 568 -571.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 568 -571. DOI: 10.1007/s11595-012-0506-3
Article

Microstructure and electrochemical behavior of laser cladded HA coating on pure titanium TA2

Author information +
History +
PDF

Abstract

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) coating was fabricated on pure Ti (TA2) by laser cladding technology. The phase structure, microstructure, microhardness and electrochemical behavior of the laser cladded HA coating in artificial body fluid were investigated. The results show that the HA coating is mainly composed of highly crystallized HA. A transitional layer between HA coating and Ti substrate is formed. Microhardness measurement shows the gradually increasing of microhardness from 150 HV at TA2 substrate to 600 HV at transitional layer, and followed by a decreasing to 400 HV at HA coated layer. Electrochemical corrosion tests show that the HA coating has higher open circuit potential, lower corrosion current density and corrosion rate in comparison to the TA2 substrate.

Keywords

HA coating / laser cladding / electrochemical behavior / Hanks’ solution

Cite this article

Download citation ▾
Quanjin Zang, Xijing He, Naiming Lin, Haopeng Li, Dong Wang, Pinglin Yang. Microstructure and electrochemical behavior of laser cladded HA coating on pure titanium TA2. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(3): 568-571 DOI:10.1007/s11595-012-0506-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang C. W., Yang H. B. Introduction to Biomaterials[M], 2006 Beijing Chem. Industry Press

[2]

Sathish S., Geetha M., Pandey N., . Studies on the Corrosion and Wear Behavior of the Laser Nitrided Biomedical Titanium and Its Alloys [J]. Mater. Sci. Eng., 2010, C30(3): 376-382.

[3]

Wisbey A., Gregson P., Peter L., . Effect of Surface Treatment on the Dissolution of Titanium-based Implant Materials [J]. Biomater., 1991, 12(5): 470-473.

[4]

Guehennec L. L., Soueidan A., Layrolle P., . Surface Treatments of Titanium Dental Implants for Rapid Osseointegration [J]. Dent. Mater., 2007, 23(7): 844-854.

[5]

Morais L., Serra G., Muller C., . Titanium Alloy Mini-implants for Orthodontic Anchorage: Immediate Loading and Metal Ion Release [J]. Acta Biomater., 2007, 3(3): 331-334.

[6]

Froimson M., Garino J., Machenaud A., . Minimum 10-year Results of a Tapered, Titanium, Hydroxyapatite-Coated Hip Stem: An Independent Review [J]. J. Arthroplasty, 2007, 22(1): 1-7.

[7]

Subramani K., Jung R. E., Molenberg A., . Biofilm on Dental Implants: A Review of the Literature [J]. Int. J. Oral Maxillofac. Implants, 2009, 24(4): 616-626.

[8]

Epinette J., Manley M. Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplast [M], 2004 Berlin Springer

[9]

De Jonge L., Leeuwenburgh S., Wolke J., . Organic-inorganic Surface Modifications for Titanium Implant Surfaces [J]. Pharm. Res., 2008, 25(10): 2 357-2 369.

[10]

Sun L., Berndt C., Gross K., . Material Fundamentals and Clinical Performance of Plasma-sprayed Hydroxyapatite Coatings: A Review [J]. J. Biomed. Mater. Res., 2001, 58(5): 570-592.

[11]

Liang J., Srinivasan P. B., Blawert C., . Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate Based Electrolytes [J]. Electrochim. Acta, 2009, 54: 3 842-3 850.

[12]

Lin N. M., Xie F. Q., Zhong T., . Influence of Adding Various Rare Earths on Microstructures and Corrosion Resistance of Chromizing Coatings Prepared Via Pack Cementation on P110 Steel [J]. J. Rare Earth, 2010, 28(2): 301-304.

[13]

Fan A., Qin L., Tian L. H., . Corrosion Resistance of Molybdenum Nitride Modified Ti6Al4V Alloy in HCl Solution [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2008, 23(3): 358-361.

[14]

He D. Y., Sun X. F., Su Z. X., . Crystallinity Analysis of Plasma Sprayed HA Coatings [J]. J. Beijing Univ. Tech., 2006, 32(12): 1 130-1 133.

[15]

Chen J., Wolke J., De Groot K. Microstructure and Crystallinity in Hydroxyapatite Coatings [J]. Biomater., 1994, 15(5): 396-399.

[16]

Fazan F., Marquis P. Dissolution Behavior of Plasma-sprayed Hydroxyapatite Coatings [J]. J. Mater. Sci.-Mater. in Med., 2000, 11(12): 787-792.

[17]

Yamamuro T., Hench L., Wilson J. Handbook of Bioactive Ceramics[M], 1990 FL CRC Press

[18]

Xu Y., Qin C. J., Zhao B. S., . Interface Structure on Hydroxyapatite Coating Based on Titanium and Designing of Functional Gradient Coating [J]. Surf. Tech., 2005, 34(001): 58-61.

[19]

Ducheyne P., Van Raemdonck W., Heughebaert J., . Structural Analysis of Hydroxyapatite Coatings on Titanium [J]. Biomater., 1986, 7(2): 97-103.

[20]

Park E., Condrate S. R. Graded Coating of Hydroxyapatite and Titanium by Atmospheric Plasma Spraying [J]. Mater. Lett., 1999, 40(5): 228-234.

[21]

Chen C., Wang D., Bao Q., . Influence of Laser Remelting on the Microstructure and Phases Constitution of Plasma Sprayed Hydroxyapatite Coatings [J]. App. Surf. Sci., 2005, 250(1–4): 98-103.

[22]

Liu X., Chu P., Ding C. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications [J]. Mat. Sci. Eng., 2004, R47(3–4): 49-121.

[23]

Cheng G., Pirzada D., Cai M., . Bioceramic Coating of Hydroxyapatite on Titanium Substrate with Nd-YAG Laser [J]. Mat. Sci. Eng., 2005, C25(4): 541-547.

[24]

Bose S., Roy M., Das K., . Surface Modification of Titanium for Load-bearing Applications [J]. J. Mater. Sci.-Mater. in Med., 2009, 20: 19-24.

[25]

Brunette D., Tengvall P., Textor M., . Titanium in Medcine[M], 2001 Berlin Springer

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/