Hydrogen diffusion in aluminum melts: An ab initio molecular dynamics study

Yang Liu , Yongbing Dai , Jun Wang , Da Shu , Baode Sun

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 560 -567.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 560 -567. DOI: 10.1007/s11595-012-0505-4
Article

Hydrogen diffusion in aluminum melts: An ab initio molecular dynamics study

Author information +
History +
PDF

Abstract

The diffusion process of hydrogen in aluminum melts was investigated by molecular dynamics simulation. The pair correlation function, first peak position, and coordination number was calculated and differences in the structural properties among Al-H, Cl-H, and Al-Cl pair were examined. The mechanism of chlorine on improving hydrogen diffusion was discussed. From an ab initio molecular dynamics calculations, the diffusivity of hydrogen in liquid aluminum as D(T)=(0.118×10−4 m 2/s)exp(−0.316 eV/kT) is obtained, which is in good agreement with the experimental data. Correspondingly the diffusivity with presence of chlorine is promoted as D(T)=(0.09×10−4 m 2/s)exp(−0.251 eV/kT). It can be concluded that the diffusion of hydrogen in aluminum melts can be enhanced in the presence of chlorine.

Keywords

ab initio molecular dynamics / hydrogen in aluminum melts / chlorine / diffusion coefficient / activation energy barrier

Cite this article

Download citation ▾
Yang Liu, Yongbing Dai, Jun Wang, Da Shu, Baode Sun. Hydrogen diffusion in aluminum melts: An ab initio molecular dynamics study. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(3): 560-567 DOI:10.1007/s11595-012-0505-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Engh T. A. Principles of Metal Refining[M], 1992 New York Oxford University Press

[2]

Hayashi S. Measurement of Hydrogen Diffusivity in Aluminum and a Dilute Alloy by Thermal Evolution Spectroscopy[J]. Jpn. J. Appl. Phys., 1998, 37: 930-935.

[3]

Warke V. S., Shankar S., Makhlouf M. M. Mathematical Modelilng and Computer Simulation of Molten Metal Cleansing by the Rotating Impeller Degasser-Part II: Removal of Hydrogen Gas and Solid Particles[J]. J. Mater. Proc. Tech., 2005, 168: 119-123.

[4]

Thomson R. Brittle Fracture in a Ductile Material with Application to Hydrogen Embrittlement[J]. J. Mater. Sci., 1978, 13: 128-133.

[5]

Birnbaum H. K. Hydrogen in Aluminum[J]. J. Alloys. Compd., 1997, 253–254: 260-264.

[6]

Krogh O., Wicker T., Chapman B. The Role of Gas Phase Reactions, Electron Impact, and Collisional Energy Transfer Processes Relevant to Plasma Etching of Polysilicon with H2 and Cl2[J]. J. Vac. Sci. Technol. B, 1986, 4: 1 292-1 295.

[7]

Scheller G. R., Gottscho R. A., Intrator T., . Nonlinear Excitation and Dissociation Kinetics in Discharges Through Mixtures of Rare and Attaching Gases[J]. J. Appl. Phys., 1988, 64: 598-601.

[8]

Talbot D. E. J., Anyalebechi P. N. Solubility of Hydrogen in Liquid Aluminum[J]. Mater Sci Technol., 1988, 4: 1-5.

[9]

Ransley C. E., Neufeld H. The Solubility of Hydrogen in Liquid and Solid Aluminum[J]. J. Inst. Metals., 1947, 74: 599-602.

[10]

Hashimoto E., Kino T. Hydrogen Diffusion in Aluminum at High Temperatures[J]. J. Phys. F: Met. Phys., 1983, 13: 1 157-1 161.

[11]

Young G. A., R J., Scully J. R. The Diffusion and Trapping of Hydrogen in High Purity Aluminum[J]. Acta. Mater., 1998, 46: 6 337-6 340.

[12]

Brun P. L. Light Metals Edited by W Schneider[C], 2002 TMS The Minerals, Metals & Materials Society 863-865.

[13]

Sigworth G. K., Engh T. A. Chemical and Kinetic Factors Related to Hydrogen Removal from Aluminum[J]. Trans. AIME B, 1982, 13B: 447-450.

[14]

Roy R. R., Utigard T. A., Dupuis C. Light Metals Edited by B Welch[C], 1998 TMS The Minerals, Metals & Materials Society 871-874.

[15]

Fu Q., Xu D., Evans J. W. Chlorine Fluxing for Removal of Magnesium from Molten Aluminum: Part I. Laboratory-scale Measurements of Reaction Rates and Bubble Behavior[J]. Metall. Mater. Trans. B, 1998, 13: 447-450.

[16]

Xu H., Jian X., Meek T. T., . Degassing of Molten Aluminum A356 Alloy Using Ultrasonic Vibration[J]. Mater. Lett., 2004, 58: 3 669-3 672.

[17]

Wolverton C., Ozolins V., Asta M. Hydrogen in Aluminum: Firstprinciples Calculations of Structure and Thermodynamics[J]. Phys. Rev. B, 2004, 69: 144 109-144 113.

[18]

Gunaydin H., Barabash S. V., Houk K. N., . First-principles Theory of Hydrogen Diffusion in Aluminum[J]. Phys. Rev. Lett., 2008, 101: 075 901-075 906.

[19]

Belonoshko A. B., Rosengren A., Dong Q., . First-principles Study of Hydrogen Diffusion in α-Al2O3 and Liquid Alumina[J]. Phys. Rev. B, 2004, 69: 024 302-024 305.

[20]

Segal M. D. First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys.: Condens. Matter., 2002, 14: 2 717-2 711.

[21]

Kresse G., Hafner J. Norm-conserving and Ultrasoft Pseudopotentials for First-row and Transition Elements[J]. J. Phys. Condens. Matter., 1994, 6: 8 245-8 249.

[22]

Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev., 1996, 77: 3 865-3 869.

[23]

Monkhorst H. J., Pack J. D. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1976, 13: 5 188-5 192.

[24]

Wang L., Liu X., Zhang Y. The Structure and Transport Property of Liquid Al with Different EAM Model[J]. Physica B, 2004, 351: 208-211.

[25]

Hill G., Holman J. Chemistry in Context[M], 2000 London Imperial College Press

[26]

Haaland A. Molecules and Models: the Molecular Structures of Main Group Element Compounds[M], 2008 New Delhi Oxford University Press

[27]

Kumar A. A Text Book of Inorganic Chemistry[M], 2003 New Delhi New Age International Publisher

[28]

Shannon R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides[J]. Acta. Cryst. A, 1976, 32: 751-755.

[29]

Zhu W. H., Wu P., Jin H. M., . Effect of Ag and Ni Additives on Zn Diffusion in Steel Hot Dip Galvanizing: an ab initio Molecular Dynamics Simulations[J]. Chem. Matter., 2004, 16: 5 567-5 570.

[30]

Linderoth S. Hydrogen Diffusivity in Aluminum[J]. Philos. Mag. Lett., 1988, 57: 229-233.

[31]

Linderoth S., Rajainmaki H., Nieminen R. M. Defect Recovery in Aluminum Proton Irradiated at 20 K[J]. Phys. Rev. B, 1987, 35: 5 524-5 528.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/