Synthesis and magnetic properties of CuFe2O4 nanotube arrays

Hua Gao , Daqiang Gao , Jing Zhang , Guijin Yang , Jinlin Zhang , Zhenhua Shi , Desheng Xue

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 550 -554.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 550 -554. DOI: 10.1007/s11595-012-0503-6
Article

Synthesis and magnetic properties of CuFe2O4 nanotube arrays

Author information +
History +
PDF

Abstract

CuFe2O4 nanotube arrays with different outer diameters were synthesized in anodic aluminum oxide templates through sol-gel techniques followed by heating treatment processes. The morphology of the nanotube arrays was investigated by field emission scanning electron microscope and transmission electron microscopy, suggesting that the nanotube arrays are ordered and uniform. The X-ray diffraction results indicate that the crystal structure of the nanotube arrays is polycrystalline with a spinel-type structure. The measurements of magnetic properties indicate that CuFe2O4 nanotube arrays with outer diameter of 200 nm exhibit magnetic anisotropy with easy magnetization direction along the axis of nanotubes.

Keywords

nanotube arrays / CuFe2O4 / sol-gel / magnetic properties

Cite this article

Download citation ▾
Hua Gao, Daqiang Gao, Jing Zhang, Guijin Yang, Jinlin Zhang, Zhenhua Shi, Desheng Xue. Synthesis and magnetic properties of CuFe2O4 nanotube arrays. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(3): 550-554 DOI:10.1007/s11595-012-0503-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han X. F., Shamaila S., Sharif R., . Structural and Magnetic Properties of Various Ferromagnetic Nanotubes[J]. Adv. Mater., 2009, 21: 4 619-4 624.

[2]

Altincekic T. G., Boz Baykal A., . Synthesis and Characterization of CuFe2O4 Nanorods Synthesized by Polyol Route[J]. J. Alloys Compd., 2010, 493: 493-498.

[3]

Thapa D., Kulkarni N., Mishra S. N., . Enhanced Magnetization in Cubic Ferrimagnetic CuFe2O4 Nanoparticles Synthesized from a Citrate Precursor: the Role of Fe2+[J]. J. Phys. D: Appl. Phys., 2010, 43: 195 004-195 008.

[4]

Kim K. J., Lee J. H., Lee S. H. Magneto-Optical Investigation of Spinel Ferrite CuFe2O4: Observation of Jahn-Teller Effect in Cu2+ Ion[J]. J. Magn. Magn. Mater., 2004, 279: 173-177.

[5]

Ponhan W., Maensiri S. Fabrication and Magnetic Properties of Electrospun Copper Ferrite (CuFe2O4) Nanofibers[J]. Solid State Sci., 2009, 11: 479-484.

[6]

Yang H. H., Yan J. H., Lu Z. G., . Photocatalytic Activity Evaluation of Tetragonal CuFe2O4 Nanoparticles for the H2 Evolution under Visible Light Irradiation[J]. J. Alloys Compd., 2009, 476: 715-719.

[7]

Laokul P., Amornkitbamrung V., Seraphin S., . Characterization and Magnetic Properties of Nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 Powders Prepared by the Aloe Vera Extract Solution[J]. Curr. Appl. Phys., 2011, 11: 101-108.

[8]

Fan H. M., Yi J. B., Yang Y., . Single-Crystalline MFe2O4 Nanotubes/ Nanorings Synthesized by Thermal Transformation Process for Biological Applications[J]. Acs Nano, 2009, 3: 2 798-2 808.

[9]

Sartale S. D., Lokhande C. D. Electrochemical Deposition and Oxidation of CuFe2 Alloy: a New Method to Deposit CuFe2O4 Thin Films at Room Temperature[J]. Mater. Chem. Phys., 2001, 70: 274-284.

[10]

Sultan M., Singh R. Magnetization and Crystal Structure of RFSputtered Nanocrystalline CuFe2O4 Thin Films[J]. Mater. Lett., 2009, 63: 1 764-1 766.

[11]

Berbenni V., Marini A., Milanese C., . Solid State Synthesis of CuFe2O4 from Cu(OH)2·CuCO3-4FeC2O4 · 2H2O Mixtures: Mechanism of Reaction and Thermal Characterization of CuFe2O4[J]. J. Therm. Anal. Calorim., 2010, 99: 437-442.

[12]

Li X., Ren P., Zhang J. X., . Preparation and Magnetic Properties of Mn-Zn Ferrites by the Co-Precipitation Method[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2009, 24: 875-878.

[13]

Sun Z. P., Liu L., Jia D. Z., . Simple Synthesis of CuFe2O4 Nanoparticles as Gas-Sensing Materials[J]. Sens. Actuators B, 2007, 125: 144-148.

[14]

Tian Z. M., Yuan S. L., Liu L., . Synthesis and Exchange Bias Effect of CuFe2O4/NiO Nanocomposites[J]. Smart Mater. Struct., 2009, 18: 015 018-015 021.

[15]

Xu L., Zou W. Q., Hong J. M. Preparation and Characterization of Nanocomposite MgFe2O4/SiO2[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2009, 24: 354-358.

[16]

Qi J. Q., Chen W. P., Lu M., . Fabrication of Copper Ferrite Nanowalls on Ceramic Surfaces by an Electrochemical Method[J]. Nanotechnology, 2005, 16: 3 097-3 100.

[17]

Huang Z. B., Yin G. F., Liao X. M., . Preparation and Magnetic Properties of Cu-Ferrite Nanorods and Nanowires[J]. J. Colloid Interface Sci., 2008, 317: 530-535.

[18]

González A. L., Landeros P., Núñez Á. S. Spin Wave Spectrum of Magnetic Nanotubes[J]. J. Magn. Magn. Mater., 2010, 322: 530-535.

[19]

Suarez O. J., Vargas P., Vogel E. E. Energy and Force between Two Magnetic Nanotubes[J]. J. Magn. Magn. Mater., 2009, 321: 3 658-3 664.

[20]

Todaro M. T., Blasi L., Giordano C., . Nanowalled Polymer Microtubes Fabricated by Using Strained Semiconductor Templates[J]. Nanotechnology, 2010, 21: 245 305-245 309.

[21]

Shi C. S., Wang G. Q., Zhao N. Q., . NiO Nanotubes Assembled in Pores of Porous Anodic Alumina and Their Optical Absorption Properties[J]. Chem. Phys. Lett., 2008, 454: 75-79.

[22]

Landeros P., Guzmán P. R., Soto-Garrido R., . Magnetostatic Fields in Tubular Nanostructures[J]. J. Phys. D: Appl. Phys., 2009, 42: 225 002-225 008.

[23]

Baber S., Zhou M., Lin Q. L., . Nanoconfined Surfactant Templated Electrodeposition to Porous Hierarchical Nanowires and Nanotubes[J]. Nanotechnology, 2010, 21: 165 603-165 611.

[24]

Son S. J., Reichel J., He B., . Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery[J]. J. Am. Chem. Soc., 2005, 127: 7 316-7 317.

[25]

Zhang L. Y., Wang J., Wei L. M., . Synthesis of Ni Nanowires via a Hydrazine Reduction Route in Aqueous Ethanol Solutions Assisted by External Magnetic Fields[J]. Nano Micro Lett., 2009, 1: 49-52.

[26]

Xu Y., Wei J., Yao J. L., . Synthesis of CoFe2O4 Nanotube Arrays through an Improved Sol-Gel Template Approach[J]. Mater. Lett., 2008, 62: 1 403-1 405.

[27]

Gao H., Gao D. Q., Xue D. S. Synthesis and Magnetic Properties of Fe100xMox Alloy Nanowire Arrays[J]. Chin. Phys. B, 2011, 20: 057 502-057 505.

[28]

Gao D. Q., Xu Y., Zhang Z. H., . Room Temperature Ferromagnetism of Cu Doped ZnO Nanowire Arrays[J]. J. Appl. Phys., 2009, 105: 063 903-063 906.

[29]

Zhang L. Y., Zhang Y. F. Fabrication and Magnetic Properties of Fe3O4 Nanowire Arrays in Different Diameters[J]. J. Magn. Magn. Mater., 2009, 321: L15-L20.

[30]

Gao H., Gao D. Q., Zhang J., . Synthesis and Anomalous Magnetic Behavior of NiO Nanotubes and Nanoparticles[J]. Micro Nano Lett., 2012, 7: 5-8.

[31]

Wu G. S., Zhang L. D., Cheng B. C., . Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach[J]. J. Am. Chem. Soc., 2004, 126: 5 976-5 977.

[32]

Diggle J. W., Downie T. C., Goulding C. W. Anodic Oxide Films on Aluminum[J]. Chem. Rev., 1969, 69: 365-405.

[33]

Xu Y., Xue D. S., Fu J. L., . Synthesis, Characterization and Magnetic Properties of Fe Nanotubes[J]. J. Phys. D: Appl. Phys., 2008, 41: 215 010-215 013.

[34]

Landeros P., Allende S., Escrig J., . Reversal Modes in Magnetic Nanotubes[J]. Appl. Phys. Lett., 2007, 90: 102 501-102 503.

[35]

Lee C. M., Chang C. R. Coercivity and Nucleation Field of Hollow Ferromagnetic Particles[J]. Mater. Chem. Phys., 1996, 43: 183-186.

[36]

Nielsch K., Castaño F. J., Ross C. A., . Magnetic Properties of Template-Synthesized Cobalt/Polymer Composite Nanotubes[J]. J. Appl. Phys., 2005, 98: 034 318-034 323.

[37]

Huang Z. B., Zhu Y., Wang S. T., . Controlled Growth of Aligned Arrays of Cu-Ferrite Nanorods[J]. Cryst. Growth Des., 2006, 6: 1 931-1 935.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/