Bacteria adherence properties of nitrogen-doped TiO2 coatings by plasma surface alloying technique

Hefeng Wang , Bin Tang , Naiming Lin , Xiuyan Li , Ailan Fan , Xuefeng Shu

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 542 -546.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 542 -546. DOI: 10.1007/s11595-012-0501-8
Article

Bacteria adherence properties of nitrogen-doped TiO2 coatings by plasma surface alloying technique

Author information +
History +
PDF

Abstract

In order to obtain a high-performance surface on 316L stainless steel (S. S) that can meet the requirements in medical material field environment, nitrogen-doped titanium dioxide (TiO2−xN x) was synthesized by oxidative annealing the resulted TiN x coatings in air. Titanium nitride coatings on 316L S. S were obtained by plasma surface alloying technique. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The bacteria adherence property of the TiO2−xN x coatings on S. S on the oral bacteria Streptococcus Mutans was investigated and compared with that of S. S by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2−xN x coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Because of the photocatalysis and positive adhesion free energy, the TiO2−xN x coatings inhibit the bacteria adherence.

Keywords

titanium dioxide / plasma alloying / stainless steel / bacteria adherence

Cite this article

Download citation ▾
Hefeng Wang, Bin Tang, Naiming Lin, Xiuyan Li, Ailan Fan, Xuefeng Shu. Bacteria adherence properties of nitrogen-doped TiO2 coatings by plasma surface alloying technique. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(3): 542-546 DOI:10.1007/s11595-012-0501-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oldfield J. W., Todd B. Technical and Economic Aspects of Stainless Steels in MSF Desalination Plants [J]. Desalination, 1999, 124(1–3): 75-84.

[2]

Olivares R., Rodill S. E., Arzate H. In Vitro Studies of the Biomineralization in Amorphous Carbon Films [J]. Surf. Coat. Technol., 2004, 177–178: 758-764.

[3]

Fini M., Aldini N. N., Torricelli P., . A New Austenitic Stainless Steel with Negligible Nickel Content: An in Vitro and in Vivo Comparative Investigation [J]. Biomaterials, 2003, 24(27): 4 929-4 939.

[4]

Disegi J. A., Eschbach L. Stainless Steel in Bone Surgery [J]. Injury, 2000, 31(S4): D2-D6.

[5]

Morikawa T., Asahi R., Ohwaki T., . Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping [J]. Jpn. J. Appl. Phys., 2001, 40(6A): L561-L563.

[6]

Cui X. L., Ma M., Zhang W., . Nitrogen-Doped TiO2 from TiN and Its Visible Light Photoelectrochemical Properties [J]. Electrochem. Commun., 2008, 10(3): 367-371.

[7]

Xu Z., Fang B. H., Zheng W. N., . A Novel Plasma Surface Metallurgy: Xu-Tec Process [J]. Surf. Coat. Technol., 1990, 43–44(P2): 1 065-1 073.

[8]

Liu X. P., Gao Y., Li Z. H., . Cr-Ni-Mo-Co Surface Alloying Layer Formed by Plasma Surface Alloying in Pure Iron [J]. Appl. Surf. Sci., 2006, 252(10): 3 894-3 902.

[9]

Dong F., Zhao W., Wu Z. Characterization and Photocatalytic Activities of C, N and S Co-Doped TiO2 with ID Nanostructure Prepared by the Nano-Confinement Effect [J]. Nanotechnology, 2008, 19(36): 365 607.1-365 607.10.

[10]

Sakthivel S., Kisch H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide[J]. Angew. Chem. Int. Edit., 2003, 42(40): 4 908-4 911.

[11]

Gopinath C. Comment on “Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles” [J]. J. Phys. Chem. B, 2006, 110(13): 7 079-7 080.

[12]

Jeyachandran Y. L., Narayandass S. K., Mangalaraj D., . A Study on Bacterial Attachment on Titanium and Hydroxyapatite Based Films [J]. Surf. Coat. Technol., 2006, 201(6): 3 462-3 474.

[13]

Quirynen M., Van der Mei H. C., Bollen C. M. L., . Clinical Relevance of the Influence of Surface Free Energy and Roughness on the Supragingival and Subgingival Plaque Formation in Man [J]. Colloid Surf. B: Biointerf., 1994, 2(1–3): 25-31.

[14]

Su W. Y., Wang S. C., Wu L., . Surface Anti-Bacterial Adhesion Characteristics of TiO2-Coated PMMA [J]. J. Struct. Chem., 2009, 11(28): 1 497-1 502.

[15]

Lee H. Y., Park Y. H., Ko K. H. Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD TiO2 Films [J]. Langmuir, 2000, 16(18): 7 289-7 293.

[16]

Huang Z., Maness P. C., Blake D. M., . Bactericidal Mode of Titanium Dioxide Photocatalysis [J]. J. Photochem. Photobiol. A. Chem., 2000, 130(2–3): 163-170.

[17]

Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine[M], 1989 New York Oxford University Press

[18]

Lonnen J., Kilvington S., Kehoe S. C., . Solar and Photocatalytic Disinfection of Protozoan, Fungal and Bacterial Microbes in Drinking Water [J]. Water Res., 2005, 39(5): 877-883.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/