Hot deformation behavior of squeeze casting SiCp/2A50 matrix composites

Hong Xu , Xin Zhang , Hongwei Li , Shun Li , Changshun Wang , Yanlong Wang , Baodong Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 443 -449.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (3) : 443 -449. DOI: 10.1007/s11595-012-0482-7
Article

Hot deformation behavior of squeeze casting SiCp/2A50 matrix composites

Author information +
History +
PDF

Abstract

The flow stress behaviors of squeeze casting SiCp/2A50 matrix composites were investigated by means of compression tests on a Gleeble 1500 therma1 mechanical simulator at isothermal constant strain rates ranging from of 0.001 to 1.0 with the testing temperature ranging from 350 to 500°C. The experiments showed that the relationship between stress and strain was obviously influenced by the strain rate and temperature. Dynamic recrystallization generally occurred at a higher temperature and a 1ower strain rate. A linear equation could be fitted between the Zener-Hollomon parameter Z and stress in the experiments. The mean value reciprocal of temperature at every true strain had a linear relation with natural logarithm of Z parameter, and the correlation coefficient, R=0.99, which was very significant by examination. The hot deformation activation energy of SiCp/2A50 matrix composites was 163.47 KJ/mol by calculation.

Keywords

SiCp/2A50 matrix composites / deformation activation energy / stress and strain / dynamic recrystallization

Cite this article

Download citation ▾
Hong Xu, Xin Zhang, Hongwei Li, Shun Li, Changshun Wang, Yanlong Wang, Baodong Zhang. Hot deformation behavior of squeeze casting SiCp/2A50 matrix composites. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(3): 443-449 DOI:10.1007/s11595-012-0482-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arsenault R J. Strengthening and Deformation Mechanisms of Discontinuous Metal Matrix Composites[C]. International Conference of Strength of Metals and Alloys (ICSMA-9), eds D G Brandon, R Chaim and A Rosen, 1991 (1):1–46

[2]

Grishaber R. B., Sergueeva A. V., Mishra R. S., . Laminated Metal Composites-High Temperature Deformation Behavior[J]. Materials Science and Engineering: A, 2005, 403(1–2): 17-24.

[3]

Li M Q, Chen Y Y, Chen D J. Electric Field Modification during Superplastic Deformation of 15 vol% SiCp/LY12 Al Composite[J]. Journal of Materials Processing Technology, 1998(73):264–267

[4]

Ogel B., Gurbuz R. Microstructural Characterization and Tensile Properties of Hot Pressed Al-SiC Composites Prepared from Pure Al and Cu Powders[J]. Materials Science and Engineering A, 2001, 301(2): 213-220.

[5]

Cavaliere P., Evangelista E. Isothermal Forging of Metal Matrix Composites: Recrystallization Behaviour by Means of Deformation Efficiency[J]. Composites Science and Technology, 2006, 66(2): 357-362.

[6]

B C Ko, Y C Yoo. Prediction of Dynamic Recrystallization Condition by Deformation Efficiency for Al 2024 Composite Reinforced with SiC Particle[J]. Journal of Materials Science, 2000 (35): 4 073–4 077

[7]

Cheng N. P., Zeng S. M., Liu Z. Y. Preparation, Microstructures and Deformation Behavior of SiCP/6066Al Composites Produced by PM Route[J]. Journal of Materials Processing Technology, 2008, 202(1–3): 27-40.

[8]

Xiong Z., Geng L., Yao C. K. Investigation of High-temperature Deformation Behavior of a SiC Whisker Reinforced 6061 Aluminium Composite[J]. Composites Science and Technology, 1990, 39(2): 117-125.

[9]

Fan J. Z., Sang J. M., Shi L. K. Fabrication, Application and Development of Particle Reinforced Aluminium Matrix Composites[J]. Materials Review, 2001, 15(10): 55-58.

[10]

Hao B., Duan X., Cui H., . Present Status and Expectation of Metal Matrix Composites[J]. Materials Review, 2005, 19(7): 64-68.

[11]

Vedani M., Errico F. D., Gariboldi E. Mechanical and Fracture Behaviour of Aluminium-based Discontinuously Reinforced Composites at Hot Working Temperatures[J]. Composites Science and Technology, 2006, 66(2): 343-349.

[12]

Bauri R., Surappa M. K. Processing and Compressive Strength of Al-Li-SiCp Composites Fabricated by a Compound Billet Technique[J]. Journal of Materials Processing Technology, 2009, 29(4): 2 077-2 084.

[13]

K Siva Kumar, K Hokamoto. Microstructural Characteristics of 2124 Al-40 vol% SiCp Metal Matrix Composites Produced by Room Temperature Shock Consolidation and Hot Shock Consolidation[J]. Journal of Materials Science, 2000 (35):5 823–5 828

[14]

El-Baradie Z. M., El-Shahat O. A., Abd El-Azim A. N. Accelerated Aging Processes in SiC-7020 Aluminium Composite[J]. Journal of Materials Processing Technology, 1998, 79(1–3): 1-8.

[15]

X X Xiang and H J Mcqueen. Deformation Behaviour and Microstructure of a 20% Al2O3 Reinforced 6061 Al Composite[J]. Applied Composite Materials, 1997(4): 333–347

[16]

Zhang X. N., Geng L., Wang G. S. Fabrication of Al-based Hybrid Composites Reinforced with SiC Whiskers and SiC Nanoparticles by Squeeze Casting[J]. Journal of Materials Processing Technology, 2006, 176(1–3): 146-151.

[17]

Zhang P., Li F. G. Microstructure-based Simulation of Plastic Deformation Behavior of SiC Particle Reinforced Al Matrix[J]. Chinese Journal of Aeronautics, 2009, 22(6): 663-669.

[18]

Zener C., Hollomon J. H. Effect of Strain Rate Upon Plastic Flow of Steel[J]. Journal of Applied Physics, 1943, l5(6): 22-32.

[19]

Fields D. S., Bachofen W. A. Determination of Strain Hardening Characteristics by Torsion Testing[J]. Proc. Soc. Test Mater., 1957, 57: 1 259-1 272.

[20]

Gronostajski Z. The Constitutive Equations for FEM Analysis[J]. Journal of Materials Processing Technology, 2000, 106(1/3): 40-44.

[21]

Srivastava V. C., Jindal V., Uhlenwinkel V., . Hot-deformation Behaviour of Spray-formed 2014 Al + SiCp Metal Matrix Composites[J]. Materials Science and Engineering: A, 2008, 477(1–2): 86-95.

[22]

Ramanathan S., Karthikeyan R., Gupta M. Development of Processing Maps for Al/SiCp Composite Using Fuzzy Logic[J]. Journal of Materials Processing Technology, 2007, 183(1): 104-110.

[23]

Feng T., Chen X. Z., Wu L., . Diffusion Welding of SiCp/2014Al Composites Using Ni as Interlayer[J]. Journal of University of Science and Technology Beijing, 2006, 13(3): 267-271.

[24]

Hui Z., Yusong H., Luoxing Li. Tensile Deformation and Fracture Behavior of Spray-deposition 7075/15SiCp Aluminum Matrix Composite Sheet at Elevated Temperatures[J]. Materials Characterization, 2008, 59(8): 1 078-1 082.

[25]

Choi H. J., Shin J. H., Min B. H., . Deformation Behavior of Al-Si Alloy Based Nanocomposites Reinforced with Carbon Nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(2): 327-329.

[26]

Gao W., Bai G., Zhou Zhimin. An Evolution Model of Dislocation Patterns in Plastic Deformation and Its Application[J]. Science in China, Ser. A, 1995, 7: 109-117.

[27]

Imai T., Mao J., Dong S., . High Strain Rate Superplasticity of TiC Particulate Reinforced 2014 Aluminum Alloy Composites[J]. Materials Science and Engineering A, 2004, 364(1–2): 281-286.

[28]

Božić D., Dimčić O., Dimčić B., . Modeling of Densification Process for Particle Reinforced Composites[J]. Journal of Alloys and Compounds, 2009, 487(1–2): 511-516.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/