Calculated structure, elastic and electronic properties of Mg2Pb at high pressure

Yonghua Duan , Yong Sun , Mingjun Peng , Zhongzheng Guo , Peixian Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 377 -381.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 377 -381. DOI: 10.1007/s11595-012-0469-4
Article

Calculated structure, elastic and electronic properties of Mg2Pb at high pressure

Author information +
History +
PDF

Abstract

The effects of high pressure on structure, elastic and electronic properties of the intermetallic Mg2Pb were calculated by the first-principles plane wave pseudo-potential method in the scheme of density functional theory (DFT) within the generalized gradient approximation. The elastic constants and Debye temperature obtained at 0 GPa are in good agreement with the available experiment data and other theoretical results. The electronic properties calculated suggest that the electronic density of states (DOS) at the Fermi level decreases under high pressure.

Keywords

Mg2Pb / elastic constants / debye temperature / electronic properties / DOS

Cite this article

Download citation ▾
Yonghua Duan, Yong Sun, Mingjun Peng, Zhongzheng Guo, Peixian Zhu. Calculated structure, elastic and electronic properties of Mg2Pb at high pressure. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(2): 377-381 DOI:10.1007/s11595-012-0469-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duan Y. H., Sun Y., Peng M. J., . Electronic Structure and Elastic Properties of Intermetallics Mg2Pb[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(10): 1 835-1 839(in Chinese).

[2]

Ramachandran V., Ibrahim M. Md. Third-order Elastic Constants and the Low-temperature Limit of the Grüneisen Parameter of Mg2Pb on Axe’s Shell Model[J]. J. Low Temp. Phys., 1982, 47(3–4): 351-353.

[3]

Van Dyke J. P., Herman F. Relativistic Energy-Band Structure of Mg2Pb[J]. Phys. Rev. B, 1970, 2(6): 1 644-1 646.

[4]

Van Attekum P. M. T. M., Wertheim G. K., Crecelius G., . Electronic Properties of Some CaF2-structure Intermetallic Compounds[J]. Phys. Rev. B, 1980, 22(8): 3 999-4 004.

[5]

Peter M. L. Electronic Structure of Magnesium Silicide and Magnesium Gemanide[J]. Phys. Rev., 1964, 135(4A): A1 110-A1 114.

[6]

Wood D. M., Zunger A. Electronic Structure of Generic Semiconductors: Antifluorite Silicide and III–V Compounds[J]. Phys. Rev. B, 1986, 34(6): 4 105-4 120.

[7]

Stringer G. A., Higgins R. J. Fermi Surface of Mg2Pb[J]. Phys. Rev. B, 1971, 3(2): 506-515.

[8]

Duan Y. H., Sun Y., Feng J., . Thermal Stability and Elastic Properties of Intermetallics Mg2Pb[J]. Physica B: Condensed Matter, 2010, 405(2): 701-704.

[9]

Morkoç H., Mohammad S. N. High-luminosity Blue and Bluegreen Gallium Nitride Lightemitting Diodes[J]. Science, 1995, 267(5194): 51-55.

[10]

Maachou A., Amrani B., Driz M. Structural and Electronic Properties of III-V Scandium Compounds[J]. Physica B: Condensed Matter, 2007, 388(1–2): 384-389.

[11]

Payne M. C., Teter M. P., Allan D. C., . Iterative Minimization Techniques for Abinitio Total Energy Calculations: Molecular Dynamics and Conjugate Gradients[ J]. Rev. Mod. Phys., 1992, 64(4): 1 045-1 097.

[12]

Louail L., Maouche D., Roumili A., . Calculation of Elastic Constants of 4d Transition Metals[J]. Mater. Lett., 2004, 58(24): 2 975-2 978.

[13]

Segall M. D., Lindan P. J. D., Probert M. J., . First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys.; Condens. Matter, 2002, 14(11): 2 717-2 744.

[14]

Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3 865-3 868.

[15]

Nye J. F. Physical Properties of Crystals[M], 1985 Oxford Oxford University Press

[16]

Music D., Houben A., Dronskowski R., . Ab Initio Study of Ductility in M2AlC (M=Ti, V, Cr)[J]. Phys. Rev. B, 2007, 75(17): 174 102-174 106.

[17]

Hu C. H., Chen D. M., Wang Y. M., . First-principles Investigations of Isotope Effects in Thermodynamic Properties of TiX2 (X = H, D, and T) System[J]. J. Alloy Compd., 2008, 450(1–2): 369-374.

[18]

Feng J., Chen J. C., Xiao B., . Stability, Thermodynamic and Mechanical Properties of the Compounds in the Ag-Sn-O System[J]. Physica B: Condensed Matter, 2009, 404(16): 2 461-2 467.

[19]

Zhou O. T. T. O., Zhu Q. I. N. G., Fischer J. E., . Compressibility of M3C60 Fullerene Superconductors: Relation Between Tc and Lattice Parameter[J]. Science, 1992, 255(5046): 833-835.

[20]

Yu W. Y., Wang N., Xiao X. B., . First-principles Investigation of the Binary AB2 Type Laves Phase in Mg-Al-Ca Alloy: Electronic Structure and Elastic Properties[J]. Solid State Sci., 2009, 11(8): 1 400-1 407.

[21]

Chung P. L., Danielson G. C. USACE Report[M], 1966 US The MIT Press

[22]

Karki B. B., Stixrude L., Clark S. J., . Structure and Elasticity of MgO at High Pressure[J]. Am. Mineral., 1997, 82(2): 51-60.

[23]

Wakabayashi N., Ahmad A. A. Z., Shanks H. R., . Lattice Dynamics of Mg2Pb at Room Temperature[J]. Phys. Rev. B, 1972, 5(6): 2 103-2 107.

[24]

Schwartz R. G., Shanks H., Gerstein B. C. Thermal Study of II–IV Semiconductors: Heat Capacity and Thermodynamic Functions of Mg2Pb from 5–300 K[J]. J. Solid State Chem., 1971, 3(4): 533-540.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/