Synthesis of mesoporous chromium aluminophosphate (CrAlPO) via solid state reaction at low temperature

Shaoyou Liu , Zisheng Chao

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 337 -345.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 337 -345. DOI: 10.1007/s11595-012-0463-x
Article

Synthesis of mesoporous chromium aluminophosphate (CrAlPO) via solid state reaction at low temperature

Author information +
History +
PDF

Abstract

Mesoporous chromium aluminophosphate (CrAlPO) was successfully synthesized via solid state reaction (SSR) route at low temperature in the presence of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and inorganic sources such as AlCl3·6H2O, CrCl3·6H2O and NaH2PO4·2H2O. Characterizations by means of powder X-ray diffraction (XRD), N2 adsorption-desorption, high resolution transmission electron microscopy (HR-TEM), scanning electron micrography (SEM), energy dispersion spectroscopy (EDS), thermo-gravimetry (TG), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet visible light spectroscopy (UV-Vis) were carried out to understand both the pore characteristics and electron transition route of these obtained materials. The experimental results show that the meso-CrAlPO materials with various Cr/Al molar ratios possess a mesostructure and a specifi c surface area of 193 to 310 m2/g corresponding to an average pore size of 5.5 to 2.2 nm, respectively. The maxium content of Cr in meso-CrAlPO materials synthesized via SSR route can achieve 16.7wt%, being significantly higher than that of the meso-CrAlPO prepared via a conventional sol-gel route. Meanwhile, the formation mechanism of the meso-CrAlPO was also proposed.

Keywords

mesoporous / chromium aluminophosphate / solid state reaction / low temperature

Cite this article

Download citation ▾
Shaoyou Liu, Zisheng Chao. Synthesis of mesoporous chromium aluminophosphate (CrAlPO) via solid state reaction at low temperature. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(2): 337-345 DOI:10.1007/s11595-012-0463-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberti G., Costantino U., Casciola M., . Preparation, Characterization and Proton Conductivity of Titanium Phosphate Sulfophenylphosphonate [J]. Solid State Ionics, 2001, 145: 249-255.

[2]

Kevin B., Annette B., John T. Highly Selective Chromium Based Ethylene Trimerization Catalysts with Bulky Diphosphinoamine Ligands[J]. Chem.Commun., 2005, 5: 620-621.

[3]

Julbe A., Farrusseng D., Guizard C. Synthesis and Characterisation of a Vanadium-Based ‘Chemical Valve’ Membrane [J]. Sep. Purif. Technol., 2001, 25: 11-24.

[4]

Schüth F., Schmidt W. Microporous and Meso-porous Materials [J]. Adv. Mater., 2002, 14: 629-638.

[5]

Ying J. Y., Mehnert C. P., Wong M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials [J]. Angew. Chem. Int. Ed., 1999, 38: 56-77.

[6]

Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev., 1997, 97: 2 373-2 419.

[7]

Davis M. E. Ordered Porous Materials for Emerging Applications [J]. Nature, 2002, 417: 813-821.

[8]

Bagshaw S. A., Pouzet E., Pinnavaia T. J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science, 1995, 269: 1 242-1 244.

[9]

Perez O. J. O., Borade R. B., Clearfield A. Synthesis of a Mesoporous Aluminophosphate[J]. J. Mol. Struct., 1998, 470: 221-228.

[10]

Akolekar D. B. Acidity and Catalytic Properties of AlPOd-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-1 1 Molecular Sieves [J]. J. Mol. Catal. A: Chem., 1995, 104: 95-102.

[11]

Kimura T. Surfactant-Templated Mesoporous Aluminophosphate — Based Materials and the Recent Progress [J]. Micropor. Mesopor. Mater., 2005, 77: 97-107.

[12]

Tian P., Liu Z. G., Wu Z. H., . Characterization of Metal-Containing Molecular Sieves and Their Catalytic Properties in the Selective Oxidation of Cyclohexane [J]. Catal. Today, 2004, 93/95: 735-742.

[13]

Selvam P., Mohapatra S. K. Synthesis and Characterization of Divalent Cobalt-Substituted Mesoporous Aluminophosphate Molecular Sieves and Their Applicationas as Novel Heterogeneous Catalysts for the Oxidation of Cycloalkanes [J]. J. Catal., 2005, 233: 276-287.

[14]

Selvam P., Mohapatra S. K. Thermally Stable Trivalent Iron-Substituted Hexagonal Mesoporous Aluminophosphate (FeHMA) Molecular Sieves: Synthesis, Characterization, and Catalytic Properties [J]. J. Catal., 2006, 238: 88-99.

[15]

Chou B., Tsai J. L., Cheng S. Cu-substituted Molecular Sieves as Liquid Phase Oxidation Catalysts[J]. Micropor. Mesopor. Mater., 2001, 48: 309-318.

[16]

Dongare M. K., Sabde D. P., Shaikh R. A., . Synthesis, Characterization and Catalytic Properties of ZrAPO-5 [J]. Catal. Today, 1999, 49: 267-276.

[17]

Selvam P., Mohapatra S. K. Synthesis, Characterization and Catalytic Properties of Mesoporous TiHMA Molecular Sieves: Selective Oxidation of Cycloalkanes[J]. Micropor. Mesopor. Mater., 2004, 73: 137-149.

[18]

Hartmann K., Kevan L. Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and Catalytic Properties [J]. Chem. Rev., 1999, 99: 635-663.

[19]

Demuth D., Unger K. K., Schuth F., . Photoluminescence of Chromium (III)-doped Silico-aluminophosphate with AFI Structure [J]. Adv. Mater., 1994, 6: 931-934.

[20]

Shylesh S., Srilakshmi C., Singh A. P., . One Step Synthesis of Chromium-Containing Periodic Mesoporous Organosilicas and Their Catalytic Activity in the Oxidation of Cyclohexane [J]. Micropor. Mesopor. Mater., 2007, 99: 334-344.

[21]

Laha S. C., Glaser R. Characterization and Catalytic Performance of [Cr]MCM-41 and [Cr]MCM-48 Prepared by Either Classical or Microwave Heating [J]. Micropor. Mesopor. Mater., 2007, 99: 159-166.

[22]

JhaR K., Shylesh S., Singh A. P. Oxidation of Ethyl Benzene and Diphenyl Methane over Ordered Mesoporous M-MCM-41 (M = Ti, V, Cr): Synthesis, Characterization and Structure Activity Correlations [J]. Micropor. Mesopor. Mater., 2006, 95: 154-163.

[23]

Toda F. Solid State Organic Chemistry: Effi cient Reaction, Remarkable Yield, and Stereo-selectivity [J]. Acc. Chem. Res., 1995, 28: 480-486.

[24]

Luan Z. H., Zhao D. Y., He H. Y., . Characterization of Aluminophosphate-Based Tubular Mesoporous Molecular Sieves [J]. J. Phys. Chem. B, 1998, 102: 1 250-1 259.

[25]

Tanev P. T., Pinnavaia T. A Neutral Templating Route to Mesoporous Molecular Sieves [J]. Science, 1995, 267: 865-867.

[26]

Polarz S., Smarsly B., Bronstein L., . From Cyclodextrin Assemblies to Porous Materials by Silica Templating [J]. Angew. Chem. Int. Ed., 2001, 40: 4 417-4 421.

[27]

Li W., Zhang M., Zhang J. L. Self-assembly of Cetyltrimethylammonium Bromide in Ethanol-Water Mixture [J]. Front. Chem. China, 2006, 1: 438-442.

[28]

Subrahmanyam C., Louis B., Rainone F., . Partial Oxidation of Toluene by O2 over Mesoporous Cr-AlPO [J]. Catal. Commum., 2002, 3: 45-50.

[29]

Laha S. C., Kamalakar G., Glaser R. Microwave-assisted Synthesis of [Cr] APO-5 [J]. Micropor. Mesopor. Mater., 2006, 90: 45-52.

[30]

Subrahmanyam C., Louis B., Rainone F., . Catalytic Oxidation of Toluene with Molecular Oxygen over Cr-substituted Mesoporous Materials [J]. Appl. Catal. A: General, 2003, 241: 205-215.

[31]

Fan H. J., Knez M., Scholz R., . Monocrystal-line Spinel Nanotube Fabrication Based on the Kirkendall Effect [J]. Nature Mater., 2006, 5: 627-631.

[32]

Rokita M., Handke M., Mozgawa W. The AIPO4 Polymorphs Structure in the Light of Raman and IR Spectroscopy Studies [J]. J. Mol. Struct., 2000, 555: 351-356.

[33]

Frunza L., Pelgrims J., Leeman H., . Incorpora tion of Transition Metal Ions in Luminophosphate Molecular Sieves with AST Structure [J]. J. Phys. Chem. B, 2001, 105: 2 677-2 686.

[34]

Shan F. K., Liu G. X., Lee W. J., . Stokes Shift, Blue Shift and Red Shift of ZnO-Based Thin Films Deposited by Pulsed-Laser Deposition[J]. J. Cryst. Growth, 2006, 291: 328-333.

[35]

Wells A. F. Structural Inorganic Chemistry [M], 1984 Oxford Clarendon Press 112

[36]

Ballhausen C. J. Introduction to Ligand Field Theory [M], 1962 New York Mc Graw-Hill Book Co. 24

[37]

Lever P., A. B. Inorganic Electronic Spectroscopy [M], 1984 Amsterdam Elsevier Pub. Co. 148

[38]

Beale A. M., Grandjean D., Kornatowski J., . Unusual Coordination Behavior of Cr3+ in Micro-porous Aluminophosphates[J]. J. Phys. Chem. B, 2006, 110: 716-722.

[39]

Miyake M., Uehara H., Suzuki H., . Syntheses of Chromium (III) -doped Aluminophosphate-5 Molecular Sieves from Various Gels [J]. Micropor. Mesopor. Mater., 1999, 32: 45-53.

[40]

Beale A. M., Grandjean D., Kornatowski J., . Unusual Coordination Behavior of Cr3+ in Microporous Aluminophosphates [J]. J. Phys. Chem. B, 2006, 110: 716-722.

[41]

Subrahmanyam C., Louis B., Rainone F., . Catalytic Oxidation of Toluene with Molecular Oxygen over Cr-substituted Mesoporous Materials[J]. Appl. Catal. A: General, 2003, 241: 205-215.

[42]

Miyake M., Uehara H., Suzuki H., . Syntheses of chromium (III) -doped Aluminophosphate-5 Molecular Sieves from Various Gels[J]. Micropor. Mesopor. Mater., 1999, 32: 45-53.

[43]

Liu L., Li H., Zhang Y. Effect of Synthesis Parameters on the Chromium Content and Catalytic Activities of Mesoporous Cr-MSU-x Prepared under Acidic Conditions[J]. J. Phys. Chem. B, 2006, 110: 1 5478-1 5485.

[44]

Gontier S., Tuel A. Novel Zirconium Containing Mesoporous Silicas for Oxidation Reactions in the Liquid Phase [J]. Appl. Catal. A: General, 1996, 143: 125-135.

[45]

Tarafdar A., Biswas S., Pramanik N. K., . Synthesis of Mesoporous Chromium Phosphate Through an Unconventional Sol-gel Route [J]. Micropor. Mesopor. Mater., 2006, 89: 204-208.

[46]

Szostack R., Thomas T. L. Reassessment of Zeolite and Molecular Sieve Framework Infrared Vibrations [J]. J. Catal., 1986, 101: 549-552.

[47]

Trowski P. K., Chmielarz L., Dziembaj R., . Dehydrogenation of Ethylbenzene with Nitrous Oxide in the Presence of Mesoporous Silica Materials Modifi ed with Transition Metal Oxides [J]. J. Phys. Chem. A., 2005, 109: 330-336.

[48]

Mohapatra S. K., Hussain F., Selvam P. Synthesis, Characterization, and Catalytic Properties of Chromium-containing Hexagonal Mesoporous Aluminophosphate Molecular Sieves [J]. Catal. Lett., 2003, 85: 217-222.

[49]

Tarafdar A., Biswas S., Pramanik N. K., . Synthesis of Mesoporous Chromium Phosphate Through an Unconventional Sol-gel Route[J]. Micropor. Mesopor. Mater., 2006, 89: 204-208.

[50]

Chen J. D., Sheldon R. A. Selective Oxidation of Hydrocarbons with O2 over Chromium Alumino-phosphate-5 Molecular Sieve [J]. J. Catal., 1995, 153: 1-8.

[51]

Rokita M., Handke M., Mozgawa W. Spectro-scopic Studies of Polymorphs of AlPO4 and SiO2[J]. J. Mol. Struct., 1998, 450: 213-217.

[52]

Oliver S., Kuperman A., Coombs N., . Lamellar Aluminophosphates that Mimic Radiolaria and Diatom Skeletons [J]. Nature, 1995, 378: 47-50.

[53]

Bu X., Feng P., Stucky G. D. Large Cage Zeolite Structures with Multidimensional 12-Ring Channels [J]. Science, 1997, 278: 2 080-2 085.

[54]

Zhang K. L., Sun J. T., Yuan L. J., Feng C. Q. Synthetic Inorganic Chemistry[M], 2008 Wuhan Wuhan University Press 284

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/