Surface modification of polypropylene microporous membrane by atmospheric-pressure plasma induced N-vinyl-2-pyrrolidone graft polymerization

Shaofeng Zhong

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 301 -309.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 301 -309. DOI: 10.1007/s11595-012-0457-8
Article

Surface modification of polypropylene microporous membrane by atmospheric-pressure plasma induced N-vinyl-2-pyrrolidone graft polymerization

Author information +
History +
PDF

Abstract

Membrane surfaces modified with poly(N-vinyl-2-pyrrolidone) (PNVP) can be endowed with hydrophilicity, biocompatibility and functionality. In this work, atmospheric pressure dielectric barrier discharge plasma graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto polypropylene (PP) microporous membrane surface was studied. The experimental results reveal that plasma treatment conditions, such as discharge power, treatment time and adsorbed NVP amount, have remarkable effects on the grafting degree of NVP. Structural and morphological changes on the membrane surfaces were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Water contact angles on the membrane surfaces decrease with the increase of NVP grafting degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of grafting degrees on pure water fluxes were also measured. It is shown that pure water fluxes increase with grafting degree firstly and then decrease adversely. Finally, filtration of bovine serum albumin (BSA) solution and platelets adhesion of the PNVP modified membranes show good protein resistance and potential biocompatibility due to the enhancement of surface hydrophilicity.

Keywords

polypropylene microporous membrane / NVP / atmospheric-pressure plasma / graft / antifouling

Cite this article

Download citation ▾
Shaofeng Zhong. Surface modification of polypropylene microporous membrane by atmospheric-pressure plasma induced N-vinyl-2-pyrrolidone graft polymerization. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(2): 301-309 DOI:10.1007/s11595-012-0457-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z. W., Wu Z. C., Mai S. H., . Research and Applications of Membrane Bioreactors in China: Progress and Prospect[J]. Sep. Purif. Technol., 2008, 62(2): 249-263.

[2]

Arora M. B., Hestekin J. A., Snyder S. W., . The Separative Bioreactor: A Continuous Separation Process for the Simultaneous Production and Direct Capture of Organic Acids[J]. Sep. Sci. Technol., 2007, 42(11): 2 519-2 538.

[3]

Bower S. E., Wickramasinghe S. R. Elimination of Non-uniform, Extra-Device Flow Effects in Membrane Adsorbers[J]. J. Membr. Sci., 2009, 330(1–2): 379-387.

[4]

Shimokawa T., Shoda M., Sugano Y. Purification and Characterization of Two DyP Isozymes from Thanatephorus Cucumeris Dec 1 Specifically Expressed in an Air-membrane Surface Bioreactor[J]. J. Biosci. Bioeng., 2009, 107(2): 113-115.

[5]

Veleirinho B., Lopes-da-Silva F. A. Application of Electrospun Poly(ethylene terephthalate) Nanofiber Mat to Apple Juice Clarification[J]. Process Biochem., 2009, 44(3): 353-356.

[6]

Charcosset C. Preparation of Emulsions and Particles by Membrane Emulsification for the Food Processing Industry[J]. J. Food Eng., 2009, 92(3): 241-249.

[7]

Lipnizki J. Optimization of Membrane Processes in White Biotechnology[J]. Desalination, 2008, 224(1–3): 105-110.

[8]

Ramesh A., Lee D. J., Wang M. L., . Biofouling in Membrane Bioreactor[J]. Sep. Sci. Technol., 2006, 41(7): 1 345-1 370.

[9]

Hilal N., Ogunbiyi O. O., Miles N. J., . Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review[J]. Sep. Purif. Technol., 2005, 40(10): 1 957-2 005.

[10]

Yamamura H., Kimura K., Okajima T., . Affinity of Functional Groups for Membrane Surfaces: Implications for Physically Irreversible Fouling[J]. Environ. Sci. Technol., 2008, 42(14): 5310-5315.

[11]

Su Y. L., Li C., Zhao W., . Modification of Polyethersulfone Ultrafiltration Membranes with Phosphorylcholine Copolymer Can Remarkably Improve the Antifouling and Permeation Properties[J]. J. Membr. Sci., 2008, 322(1): 171-177.

[12]

Yu H. Y., Xu Z. K., Lei H., . Photoinduced Graft Polymerization of Acrylamide on Polypropylene Microporous Membranes for the Improvement of Antifouling Characteristics in a Submerged Membrane-bioreactor[J]. Sep. Purif. Technol., 2007, 53: 119-125.

[13]

Schmidt C., Schmidt-Naake G. Proton Conducting Membranes Obtained by Doping Radiation-Grafted Basic Membrane Matrices with Phosphoric Acid[J]. Macromol. Mater. Eng., 2007, 292(10–11): 1 164-1 175.

[14]

Schmidt C., Topfer O., Langhoff A., . Depth Profiling of Graft Polymer Membranes via Confocal Laser Scanning Microscopy[J]. Chem. Mater., 2007, 19(17): 4 277-4 282.

[15]

Liu F., Zhu B. K., Xu Y. Y. Preparation and Characterization of Poly(vinyl chloride) — graft-acrylic Acid Membrane by Electron Beam[J]. J. Appl. Polym. Sci., 2007, 105(2): 291-296.

[16]

Xu F. J., Zhao J. P., Kang E. T., . Functionalization of Nylon Membranes via Surface-initiated Atom-transfer Radical Polymerization[J]. Langmuir, 2007, 23(16): 8585-8592.

[17]

Liu Z. M., Xu Z. K., Wan L. S., . Surface Modification of Polypropylene Microfiltration Membranes by the Immobilization of Poly(Nvinyl-2-pyrrolidone): A Facile Plasma Approach[J]. J. Membr. Sci., 2005, 249: 21-31.

[18]

Denes F. S., Manolache S. Macromolecular Plasma-chemistry: An Emerging Field of Polymer Science[J]. Prog. Polym. Sci., 2004, 29: 815-885.

[19]

Wang C., Chen J. R. Studies on Surface Graft polymerization of Acrylic Acid onto PTFE Film by Remote Argon Plasma Initiation[J]. Appl. Surf. Sci., 2007, 253: 4 599-4 606.

[20]

Kim J. H., Sohn J., Cho J. H., . Surface Modification of Nafion Membranes Using Atmospheric-pressure Low-temperature Plasmas for Electrochemical Applications[J]. Plasma Process. Polym., 2008, 5(4): 377-385.

[21]

Tendero C., Tixier C., Tristant P., . Atmospheric Pressure Plasmas: A Review[J]. Spectrochimica Acta Part B, 2008, 61: 2-30.

[22]

Hoven V. P., Chombanpaew K., Iwasaki Y., . Improving Blood Compatibility of Natural Rubber by UV-Induced Graft Polymerization of Hydrophilic Monomers[J]. J. Appl. Polym. Sci., 2009, 112: 208-217.

[23]

Raguime J. A., Arthanareeswaran G., Thanikaivelan P., . Performance Characterization of Cellulose Acetate and Poly(vinylpyrrolidone) Blend Membranes[J]. J. Appl. Polym. Sci., 2007, 104: 3042-3049.

[24]

Albrecht W., Schauer J., Weigel T., . Modification of Poly(ether imide) Membranes with Brominated Polyvinylpyrrolidone[J]. J. Membr. Sci., 2007, 291: 10-18.

[25]

Wu Z. Q., Chen H., Liu X. L., . Protein Adsorption on Poly(Nvinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization[J]. Langmuir, 2009, 25(5): 2 900-2 906.

[26]

Matsuda M., Yamamoto K. -i., Yakushiji T., . Nanotechnological Evaluation of Protein Adsorption on Dialysis Membranesurface Hydrophilized with Polyvinylpyrrolidone[J]. J. Membr. Sci., 2008, 310: 219-228.

[27]

Zhang L. F., Meng L. Z., Lu X. J., . Novel Amphiphilic Poly(N-vinylpyrrolidone) Block Copolymer: Aggregative Behavior and Interaction with DNA[J]. Macromol. Symp., 2008, 261: 182-189.

[28]

Peng Q., Lu S. Q., Chen D. Z., . Poly(vinylidene fluoride)-graft-Poly(N-vinyl-2-pyrrolidone) Copolymers Preparedvia a RAFTMediated Process and Their Use in Antifouling and Antibacterial Membranes[J]. Macromol. Biosci., 2007, 7: 1 149-1 159.

[29]

Saxena A., Mozumdar S., Johri A. K. Ultra-low Sized Cross-linked Polyvinylpyrrolidone Nanoparticles as Non-viral Vectors for in vivo Gene Delivery[J]. Biomaterials, 2006, 27: 5 596-5 602.

[30]

Ren C. S., Wang D. Z., Wang Y. N. Graft Co-polymerization of Acrylic Acid onto the Linen Surface Induced by DBD in Air[J]. Surf. Coat. Technol., 2006, 201: 2867-2870.

[31]

Yu H. Y., Xu Z. K., Xie Y. J., . Flux Enhancement for Polypropylene Microporous Membrane in a SMBR by the Immobilization of Poly(N-vinyl-2-pyrrolidone) on the Membrane surface[J]. J. Membr. Sci., 2006, 279(1–2): 148-155.

[32]

Kou R. Q., Xu Z. K., Deng H. T., . Surface Modification of Microporous Polypropylene Membranes by Plasma-Induced Graft Polymerization of r-Allyl Glucoside[J]. Langmuir, 2003, 19: 6 869-6 875.

[33]

Hu M. X., Yang Q., Xu Z. K. Enhancing the Hydrophilicity of Polypropylene Microporous Membranes by the Grafting of 2-hydroxyethyl Methacrylate Via a Synergistic Effect of Photoinitiators[J]. J. Membr. Sci., 2006, 285: 196-205.

[34]

Boyd R. D., Kenwright A. M., Badyal J. P. S., . Atmospheric Nonequilibrium Plasma Treatment of Biaxially Oriented Polypropylene[J]. Macromolecules, 1997, 30: 5429-5436.

[35]

Yu H. Y., Xu Z. K., Yang Q., . Improvement of the Antifouling Characteristics for Polypropylene Microporous Membranes by the Sequential Photoinduced Graft Polymerization of Acrylic Acid[J]. J. Membr. Sci., 2006, 281: 658-665.

[36]

Kelly S. T., Zydney A. L. Effects of Intermolecular Thiol-disulfide Interchange Reaction on BSA Fouling during Mircofiltration[J]. Biotechnol. Bioeng., 1994, 44: 972-982.

[37]

Kelly S. T., Zydney A. L. Protein Fouling during Microfiltration: Comparative Behavior of Different Model Proteins[J]. Biotechnol. Bioeng., 1997, 55: 91-100.

[38]

Wink T., de Beer J., Hennink W. E., . Interaction between Plasmid DNA and Cationic Polymers Studied by Surface Plasmon Resonance Spectrometry[J]. Anal. Chem., 1999, 71: 801-805.

[39]

Gumusderelioglu M., Agi P. Adsorption of Concanavalin A on the Well-Characterized Macroporous Chitosan and Chitin Membranes[J]. React. Funct. Polym., 2004, 61: 211-220.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/