Effects of five chitosan oligosaccharides on nuclear factor-kappa B signaling pathway

Xian Li , Changren Zhou , Xiaojia Chen , Ju Wang , Jinhuan Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 276 -279.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 276 -279. DOI: 10.1007/s11595-012-0452-0
Article

Effects of five chitosan oligosaccharides on nuclear factor-kappa B signaling pathway

Author information +
History +
PDF

Abstract

The effects of five chito-oligomers, from dimer to hexamer (chitobiose, chitotriose, chitotetraose, chitopentaose, chitohexaose) separated from chitosan oligosaccharides, on nuclear factor -kappaB (NF-κB) signaling pathway were investigated by using luciferase assay and laser scanning microscopy. The expression of NF-κB downstream genes (cyclin D1, TNFα and IL-6) were tested by real time PCR. We found that all five chitosan oligosaccharides increased NF-κB-dependent luciferase gene expression and NF-κB downstream genes transcription, and the most significant were chitotetraose and chitohexaose. In addition, laser scanning microscopy experiments showed that chitotetraose and chitohexaose also activated the p65 subunite of NF-κB translocating from cytoplasm to nucleus, which suggested that they were the most potent activators of NF-κB signaling pathway.

Keywords

chitosan / chitosan oligosaccharide / nuclear factor-kappa B / inflammatory response

Cite this article

Download citation ▾
Xian Li, Changren Zhou, Xiaojia Chen, Ju Wang, Jinhuan Tian. Effects of five chitosan oligosaccharides on nuclear factor-kappa B signaling pathway. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(2): 276-279 DOI:10.1007/s11595-012-0452-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X.N., Chen X.M., Li S.P., . Synthesis and Characterization of Core-shell Hydroxyapatite/chitosan Biocomposite Nanospheres [J]. J. Wuhan. Univ. Technol.-Materials Science Edition, 2010, 25(2): 252-256.

[2]

Gong S.Q., Tu H.W., Zheng H., . Chitosan-g-PAA Hydrogels for Colon-Specific Drug Delivery: Preparation, Swelling Behavior and in vitro Degradability [J]. J. Wuhan. Univ. Technol.-Materials Science Edition, 2010, 25(2): 248-251.

[3]

Kim S.K., Rajapakse N. Enzymatic Production and Biological Activities of Chitosan Oligosaccharides (COS): A Review [J]. Carbohyd. Polym., 2005, 62(4): 357-368.

[4]

Jeon Y. J., Park P. J., Kim S. K. Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor[J]. Carbohyd. Polym., 2001, 44(1): 71-76.

[5]

Lillo L., Alarcón J., Cabello G., . Antibacterial Activity of Chitooligosaccharides [J]. Z. Naturforsch. C., 2008, 63(9–10): 644-648.

[6]

Wu H.G., Yao Z., Bai X.F., . Anti-angiogenic Activities of Chitooligosaccharides [J]. Carbohyd. Polym., 2008, 73(1): 105-110.

[7]

Xiong C.N., Wu H.G., Wei P., . Potent Angiogenic Inhibition Effects of Deacetylated Chitohexaose Separated from Chitooligosaccharides and Its Mechanism of Action in vitro[J]. Carbohyd. Res., 2009, 344(15): 1 975-1 983.

[8]

Huang R., Mendis E., Rajapakse N., . Strong Electronic Dharge as an Important Factor for Anticancer Activity of Chitooligosaccharides (COS) [J]. Life. Sci., 2006, 78(20): 2 399-2 408.

[9]

Liang T.W., Chen Y.J., Yen Y.H., . The Antitumor Activity of the Hydrolysates of Chitinous Materials Hydrolyzed by Crude Enzyme from Bacillus Amyloliquefaciens V656 [J]. Process. Biochem., 2007, 42(4): 527-534.

[10]

Yuan W.P., Liu B., Liu C.H., . Antioxidant Activity of Chitooligosaccharides on Pancreatic Islet Cells in Streptozotocin-induced Diabetes in Rats [J]. World. J. Gastroenterol., 2009, 15(11): 1339-1345.

[11]

Ngo D.N., Lee S.H., Kim M.M., . Production of Chitin Oligosaccharides with Different Molecular Weights and Their Antioxidant Effect in RAW 264.7 Cells [J]. J. Functional. Food, 2009, 1(2): 188-198.

[12]

Wu G.J., Tsai G.J. Chitooligosaccharides in Combination with Interferon-γ Increase Nitric Oxide Production via Nuclear Factor-κB Activation in Murine RAW264.7 Macrophages [J]. Food Chem. Toxico., 2007, 45(2): 250-258.

[13]

Sen R., Baltimore D. Multiple Nuclear Factors Interact with the Immunoglobulin Enhancer Sequences [J]. Cell., 1986, 46(5): 705-716.

[14]

Moynagh P.N. The NF-kappaB Pathway [J]. J. Cell. Sci., 2005, 118(Pt20): 4 589-4 592.

[15]

Hayden M.S., Ghosh S. Shared Principles in NF-κB Signaling [J]. Cell., 2008, 132(3): 344-362.

[16]

Schmid J.A., Birbach A., Hofer-Warbinek R., . Dynamics of NF-κB and IκBα Studied with Green Fluorescent Protein (GFP) Fusion Proteins [J]. J. Biol. Chem., 2000, 275(22): 17 035-17 042.

[17]

Jones C.D., Darnell K.H., Warnke R.A., . CyclinD1/CyclinD3 Ratio by Real-time PCR Improves Specificity for the Diagnosis of mantle cell lymphoma [J]. J. Mol. Diagn., 2004, 6(2): 84-89.

[18]

Sawa Y., Ueki T., Hata M., . LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 Expression in Human Lymphatic Endothelium [J]. J. Histochem. Cytochem., 2008, 56(2): 97-109.

[19]

Sawyer R.T., Fontenot A.P., Barnes T.A., . Beryllium-induced TNFalpha Production is Transcription-dependent in Chronic Beryllium Disease[J]. Am. J. Respir. Cell. Mol. Biol., 2007, 36(2): 191-200.

[20]

Kaisho T., Akira S. Toll-like Receptor Function and Signaling [J]. J. Allergy. Clin. Immunol., 2006, 117(5): 979-987.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/